首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
为系统分析纵连无砟轨道与桥上无缝道岔在制动力作用下的受力与变形规律,以武汉—广州客运专线雷大桥铺设博格纵连式无砟道岔为例,将客专18号渡线、纵连式无砟轨道、桥梁和墩台视为整体,建立了岔-板-梁-墩一体化计算模型,分析制动力作用下道岔、道床板、桥墩的受力和变形规律.分析结果表明:在制动力作用下,基本轨制动附加力及位移随道床板伸缩刚度的减小而增大,但板轨相对位移未超过1 mm;限位器和间隔铁的纵向力及心轨、尖轨处板轨相对位移受无砟轨道结构的影响较小,限位器未贴靠,间隔铁力最大未超过13 kN;道床板制动附加力随伸缩刚度的降低而减小,减小量最大达到3 832.9 kN,位移则增大,最多达到17.4 mm;道床板伸缩刚度和滑动层摩擦因数减小对桥墩受力不利;当滑动层摩擦因数μ≤0.2时,取消固结机构,桥墩纵向力减小值接近500 kN.  相似文献   

2.
无碴道岔轨道刚度分布规律及均匀化   总被引:6,自引:4,他引:6  
为了揭示道岔铺设在无碴轨道上的刚度分布规律,建立了道岔轨道刚度有限元计算模型.模型中考虑了钢轨抗弯刚度、扣件刚度、基础刚度、滑床台、护轨及间隔铁等因素的影响.以12号提速道岔为例,计算了道岔铺设在无碴轨道上的整体刚度.结果表明:轨道刚度在纵向和横向都存在严重不平顺,里轨与基本轨的整体刚度比最大约为2.418,里轨整体刚度纵向变化率最大约为242%.此外,为了消除道岔铺设在无碴轨道上的刚度不平顺,运用所建立的模型,探讨了均匀道岔轨道刚度分布的扣件刚度设置方式.  相似文献   

3.
4.
连续梁桥上无缝道岔伸缩力与位移计算   总被引:8,自引:0,他引:8  
将钢轨和梁体视为杆单元,轨枕视为梁单元,扣件阻力、道床阻力和桥墩刚度视为弹簧单元,建立了计算连续梁桥上无缝道岔伸缩力与位移的有限元力学模型,根据变分原理和“对号入座”法则建立了模型求解的非线性方程组,分析了道岔设计参数对桥上无缝道岔伸缩力和位移的影响。研究结果表明:伸缩调节器布置在道岔的后端,连续梁固定墩的纵向力可降低43.2%;增加连续梁固定墩纵向刚度有利于减小钢轨位移;连续梁固定支座的位置对系统的受力与变形有双重影响,实际设计时应综合考虑。  相似文献   

5.
混凝土的收缩徐变会引起混凝土连续梁桥不断上拱或下挠。当前国内在建高速铁路中许多混凝土连续梁桥将采用无碴轨道,其可调性很小,必须控制铺轨后的徐变变形(后期徐变变形)。对几种常用规范的混凝土徐变系数影响因素、计算公式进行了对比研究,并以武广客运专线上一座(70+125+70)m混凝土连续梁桥为例,模拟整个施工过程按几个常用规范对该桥进行对比分析计算,研究了混凝土的收缩徐变对桥梁变形和截面应力的影响。计算结果显示,混凝土的收缩徐变引起的桥梁后期徐变变形不可忽视;根据不同规范计算得出的桥梁后期徐变变形差别较大。  相似文献   

6.
简支梁桥上无缝道岔纵向力影响因素分析   总被引:3,自引:1,他引:3  
根据桥上无缝道岔纵向相互作用的特点,建立了道岔-桥梁-墩台一体化有限元计算模型,以18号道岔铺设在简支梁桥上为例,分析了钢轨温度、桥梁温度、桥梁跨度、支座布置形式、墩台刚度、辙跟传力部件结构及阻力参数等对简支梁桥上无缝道岔受力与变形的影响.计算结果表明,简支梁桥上的无缝道岔对线路和桥梁的影响范围仅限于与道岔相邻的2孔梁以内;应采用道岔里轨与简支梁伸缩位移方向相反的桥上无缝道岔布置方式;应适当增大道岔范围内桥墩的纵向刚度;桥上无缝道岔辙跟不宜采用间隔铁结构;18号道岔宜铺设在跨度32或48 m的简支梁桥上.  相似文献   

7.
连续梁桥上无缝道岔断轨力计算分析   总被引:1,自引:0,他引:1  
钢轨在桥梁上的最不利位置处会因强度不足而折断,并自断口处收缩,产生较大的位移量,致使列车经过断缝时产生巨大的冲击作用,严重时危及行车安全,因此,在进行连续梁桥上铺设无缝道岔的检算时,必须考虑断轨力的影响。以一组60kg/m钢轨18#可动心轨道岔为例,采用有限单元法,利用“岔-梁-墩-体化”模型,计算分析了连续梁桥在无缝道岔断轨力作用下桥梁与钢轨的受力和变形特征。结果表明,钢轨在岔前方向折断时桥墩所受纵向力要大于钢轨在岔后方向折断时的受力,道岔里轨的伸缩对桥墩受力起着主要作用;道岔前后不同位置钢轨折断对断轨力的计算结果影响较大,应代入最不利结果进行检算。  相似文献   

8.
板式无碴轨道垫层CA砂浆研究与进展   总被引:4,自引:0,他引:4  
CA砂浆是板式无碴轨道结构弹性调整层的核心。从板式无碴轨道CA砂浆材料物理力学性能、耐久性及耐候性等多方面阐述了其组成、结构及其与性能之间的相互影响,指出当前板式无碴轨道CA砂浆的冻融、老化等破环机理,并提出其防治措施。  相似文献   

9.
王霜  林亮 《交通标准化》2009,(1):143-146
确定斜拉桥合理成桥状态的关键问题主要在于如何控制斜拉索在成桥时的索力。基于大量的中外文献,通过对当前相关研究成果的优缺点进行评述和比较,可提出综合采用刚性索法与自动调索法确定合理成桥索力的原理及步骤。通过算例证明,该方法概念明确,计算方便,所得结果满足要求。  相似文献   

10.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。  相似文献   

11.
运用有限单元法建模,分析扣件刚度对菱形交分道岔心轨和尖轨强度的影响以及沟槽开设方式对板下胶垫应力的影响,同时研究准静态轮载作用下轨道变形的合理性。结果表明,尖轨和心轨的强度及板下胶垫的强度均能够满足使用要求;菱形交分轨道刚度的均匀性能满足列车运行速度在120km/h及以下的使用要求。  相似文献   

12.
线路爬行对无缝道岔受力与变形的影响分析   总被引:3,自引:2,他引:3  
无缝道岔辙叉及辙跟结构不同,则纵向力的传递机理不同,致使不同结构的无缝道岔受力与变形规律不同。分析比较了固定辙叉、长翼轨可动心轨、短翼轨可动心轨三种辙叉型式、限位器及间隔铁两种辙跟型式的无缝道岔纵向力传递机理及无缝道岔各部件受力及变形的影响。分析结果表明:提高线路阻力,控制无缝道岔前后线路的爬行量,有利于提高无缝道岔的铺设轨温范围。  相似文献   

13.
直线与曲线轨道上车辆悬挂相对位移的计算   总被引:1,自引:1,他引:1  
借助分析刚体上任意点相对其参考坐标系的位移的方法,通过在直线轨道和曲线轨道上分别建立不同的参考坐标系,经过坐标系之间变换,可快捷和准确地计算出直线轨道和曲线轨道上车辆系统悬挂相对位移.  相似文献   

14.
为获得悬索桥锚跨索股高精度索力,便于施工过程中索力控制,基于泰州长江公路大桥锚跨索股参数识别结果,利用桥梁结构非线性分析软件BNLAS建立了锚跨索股的精细化模型.通过赋予该模型中索股不同的初始索力值,得到一系列一一对应的索力-频率数据;对这些数据进行回归分析,建立索力与频率的显式关系,从而无需通过迭代求解超越方程获得索力.基于弹性理论计算,提出了索力的调整方法,即将索力的调整转换为锁紧螺母螺距的调整.研究结果表明:用提出的方法计算索力,误差均在3%以内;所提出的索力调整方法可靠,满足施工控制对索力监控的要求.  相似文献   

15.
为了更好地指导无缝道岔的设计、施工和维护,探讨了不同线路间存在铺设锁定轨温差时,铺设锁定轨温差对无缝道岔受力和变形的影响以及与道岔联结型式、道岔号码、辙叉型式和道床纵向阻力的关系.结果表明,当无缝道岔与相邻线路或相邻道岔间存在铺设锁定轨温差时,传递至无缝道岔上的纵向力增大,导致无缝道岔受力与变形增大.  相似文献   

16.
高速铁路长大桥梁无缝线路附加挠曲力计算分析   总被引:3,自引:0,他引:3  
根据高速铁路长大桥梁无砟轨道无缝线路梁轨相互作用原理,结合京沪高铁实际情况,建立了京沪高铁整桥双线有限元模型,以10跨32 m混凝土简支箱梁桥为例,用有限元法计算分析了高速铁路长大桥梁无砟轨道无缝线路附加挠曲力及附加挠曲位移的分布。计算结果表明,列车在双线简支箱梁上单线运行时,其附加挠曲力值较小,4根钢轨的附加挠曲力值有所差别,但差别不大。钢轨附加挠曲力在桥台处较大,钢轨纵向位移则在桥梁中部较大,在桥台处较小。  相似文献   

17.
用广义变分法来计算桥上无缝线路附加力,提出了研究桥上无缝线路附加力计算的新方法。基于已有的试验及计算结果,先假设钢轨伸缩附加力函数,由此得到钢轨位移及梁轨相对位移函数,再通过对梁轨体系总能量进行广义变分计算,建立起结构体系的平衡方程,最后编制相应的计算程序,得到了符合工程实际的计算结果。  相似文献   

18.
高速铁路桥上无缝线路断轨力计算模型   总被引:2,自引:1,他引:1  
在吸收前人研究成果的基础上, 采用实体单元模拟桥梁及桥梁墩台, 采用空间梁单元模拟钢轨及轨枕, 采用弹簧单元模拟钢轨、轨枕、桥梁与墩台之间的连接, 建立了断轨三维有限元空间力学模型。以秦沈客运专线10跨32 m简支双线整孔箱形梁桥为例, 对其进行断缝值影响因素分析。研究结果表明: 对于多跨简支梁桥, 断缝与梁温度变化幅度、断缝位置、支座摩擦阻力关系不大; 断缝值与扣件纵向阻力、钢轨温度变化幅度、桥墩纵向刚度、钢轨类型关系比较密切; 断缝值及采用的力学计算模型也有一定的关系, 相比传统计算模型, 空间力学模型计算结果偏小。  相似文献   

19.
采用Tekscan压力测量系统现场测试了遂宁—重庆客货共线无砟轨道钢轨支点压力, 提出了高斯函数型钢轨支点压力时程表达式, 并通过现场实测数据对其进行验证; 根据钢轨支点压力时程表达式, 采用时序式加载法对轨道结构模型施加荷载, 并将其动力响应结果分别与车辆-轨道-路基垂向耦合振动模型的计算结果和现场实测结果进行对比。研究结果表明: 现场实测客货车对钢轨支点的最大压力分别为29.91和82.49 kN, 与中国铁道科学研究院测试结果的相对误差小于20%, 故Tekscan压力测量系统可精确测试钢轨支点压力; 高斯函数拟合所得客货车对钢轨支点压力的时程曲线与实测曲线的相关系数分别为0.962 7和0.966 7, 最大压力与现场实测值的相对差异分别为5.15%和0.46%, 最小压力与现场实测值的相对差异分别为7.23%和24.11%, 故采用高斯函数能较好地模拟客货车对钢轨支点压力的时程曲线, 且货车作用下钢轨支点压力时程的模拟精度略高于客车; 基于时序式加载法的荷载激励-轨道-路基模型计算结果与车辆-轨道-路基垂向耦合振动模型计算结果和现场测试结果相比, 轨道板最大位移相对差异分别为5.41%和2.70%, 底座板最大位移相对差异分别为2.86%和5.71%, 轨道板最大加速度相对差异分别为14.00%和23.20%, 底座板最大加速度相对差异分别为13.61%和8.73%。可见, 基于时序式加载法和高斯函数型钢轨支点压力时程表达式的荷载激励-轨道-路基模型可靠, 该方法无需建立车体模型, 既能保证计算效率, 又具有很高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号