首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
玻璃基片上双层多模光波导的制备   总被引:1,自引:0,他引:1       下载免费PDF全文
在光学玻璃基片上制作了双层掩埋式多模光波导芯片,这种芯片中的上、下两层光波导均通过熔盐离子交换和电场辅助离子迁移形成。对光波导的横截面以及输出光斑进行了观察,并进行了损耗和串扰测试。研究结果表明:双层多模光波导芯片中上、下两层光波导芯部横截面尺寸分别为29 m19 m和31 m20 m;两层波导的输出光斑尺寸相互匹配;两层波导传输损耗分别为1.000.32 dB/cm和0.780.35 dB/cm;两层光波导之间的串扰在17.7dB左右。这种玻璃基片上的双层多模光波导可以使板级光互连的互连密度增大一倍,提高EOCB的性能。  相似文献   

2.
基于硅基波导、十字状波导交叉和基于波导微环的光交换器件的损耗特性,对 Torus结构的芯片上光互连网络建立了损耗模型,利用该模型来对芯片上光互连网络进行光器件级、光路由器级和网络级的损耗特性分析,同时建立芯片上光互连网络损耗自动分析系统。依据该系统可以得到不同网络规模下的最大损耗,并分别分析了基于crossbar、cygnus和crux路由器的torus结构网络的损耗特性。可以得到,传输损耗随着网络规模的扩展而增加,最小的传输损耗出现在M=N时。同时,可以得到采用Crux路由器构成的芯片上光互连网络的传输损耗最小,小于Cygnus构成的芯片上光互连网络约5dB。  相似文献   

3.
低损耗聚合物互连光波导的制备及性能测试   总被引:2,自引:1,他引:1  
对应用于宽带光互连的光印刷电路板(OPCB)制备技术进行了研究。作为光互连系统的传输介质,我们研究了互连光波导的性能。基于紫外光刻技术,在常规PCB基底上制备了聚合物光波导,研究了光波导的制备流程以及工艺参数;并且通过不断优化工艺参数,制备得到了低损耗的光波导;通过测试光波导的传输损耗以及眼图,分析了光波导的性能。光波导在850nm波长条件下的传输损耗可以达到0.13dB/cm,实现了10Gbit/s光通信信号的传输。  相似文献   

4.
丁亮  周东  李磊 《光通信技术》2007,31(10):59-61
针对板间或芯片间的甚短距离光传输系统,采用SERDES作为物理层,设计了一种单路速率达2Gb/s的串行点对点传输协议,可以在板间或不同IP间,通过光互连提供高速数据传输.详细叙述了设计光互连系统所需的轻量级数据链路层协议的过程和要素.并采用FPGA技术实现协议,给出了测试结果和结论.  相似文献   

5.
详细介绍了一种测量光波导传输损耗的匹配液测量法.通过将波导插入折射率高于波导芯层的液体将光线耦合出波导,获得波导传输线上各点实际通过的光强,拟合出光强传输衰减曲线.与传统测量方法相比,本方法可对波导进行重复性测量,尤其适用于传输损耗低于0.1 dB/cm光波导的测量.  相似文献   

6.
基于不断发展的系统级封装技术,提出了一种用于芯片间高速互连的新型可集成的物理器件:硅基毫米波介质填充波导。文中阐述了该器件的物理原理,采用建模、仿真相结合的方法对该模块进行了结构设计,利用新的设计思路结合半导体工艺解决了毫米波互连结构内部的反射、电压驻波比(VSWR)、信号耦合、准TEM-TE-准TEM转换传输问题以及毫米波互连结构阵列中信号泄露的问题,并利用半导体与MEMS加工工艺加以实现。测试结果表明宽度为680μm的单通道矩形波导,-10 d B带宽为9.8 GHz,相对带宽为12.56%;传输损耗为1 d B/cm,工作频带内相邻波导之间串扰低于-40 d B,可以形成大阵列并进行集成,从而实现芯片间数据的并行传输。  相似文献   

7.
王少清  孙小燕  夏国才  罗志 《激光与红外》2014,44(11):1207-1212
利用飞秒激光横向直写方式加工光波导,采用散射光测量法分析了光波导的传输损耗。为了提高光波导的传输性能,分析了不同数值孔径的聚焦物镜、加工速度和加工能量对光波导传输损耗的影响。实验结果表明,聚焦物镜数值孔径为0.25,激光功率为6 m W,加工速度在45~60μm/s时,飞秒激光加工的光波导具有较好的传输性能,其传输损耗低于-0.2 d B/cm。  相似文献   

8.
聚合物脊形光波导设计   总被引:3,自引:1,他引:2  
用5层非对称平面波导理论和等效折射率法(ERIM)分析了金属电极对聚合物脊形光波导横向模式特性及其传输损耗的影响。计算结果表明:在工作波长1.55μm波段,当常规脊形光波导的芯层厚度大于0.8μm、包层厚度大于3.0μm时,才能保证传输损耗的理论极限小于0.1dB/cm;当脊波导刻蚀深度为0.l一0.2μm、对应脊波导宽度为7—5μm时,可满足脊波导横向单模传输。  相似文献   

9.
利用Ag+-Na+电场辅助玻璃基离子交换技术制作了低损耗的掩埋多模波导,并在此基础上研制了多模波导光功分器.测试分析了多模波导和光功分器的损耗和偏心率特性.所研制的多模直波导传输损耗小于0.1dB/cm,所制作的1×2的多模波导光功分器附加损耗小于1.3 dB.  相似文献   

10.
系统地开展了基于光刻及湿法显影工艺制备的聚合物光波导散射损耗的理论及实验研究。研究了包括粗糙度、波导尺寸和工作波长等主要参数对散射损耗的影响,采用激光共聚焦显微镜测量了光波导侧壁及上下表面的粗糙度。实验结果表明,波导侧壁的平均粗糙度约为60nm,是上下表面粗糙度的3倍。因此,散射损耗主要由侧壁粗糙引起,其大小是上下表面粗糙引入散射损耗的9倍。基于上述理论及实验结果,通过优化波导设计,制备了工作于1310nm波长、平均损耗为0.35dB/cm的低损耗单模聚合物光波导,其作为高速高密度光背板的关键传输介质具有良好的应用前景。  相似文献   

11.
Deuterated polyfluoromethacrylate which has high transparency, low birefringence and good processability was newly synthesized for use as optical waveguide materials, and both single-mode and multimode optical waveguides were fabricated using the polymer. The propagation loss and waveguide birefringence of the single-mode waveguides were as low as 0.10 dB/cm and -5.5×10-6 at 1.31 μm, respectively. The propagation losses of the multimode waveguides were less than 0.02 dB/cm at both 0.68 and 0.83 μm, and 0.07 dB/cm at 1.31 μm  相似文献   

12.
Low-loss single-mode GaAs/AlGaAs miniature optical waveguides fabricated for use in monolithically integrated optical circuits are discussed. The propagation characteristics of these waveguides with straight and S-bending structures have been investigated at wavelengths of 1.30 and 1.55 μm. The lowest propagation losses are estimated to be 0.58 dB/cm and 0.69 dB/cm at wavelengths of 1.30 and 1.55 μm, respectively. The total loss of an S-bending waveguide with a curvature radius of 2 mm and with a lateral displacement of 200 μm was 0.61 dB and 0.46 dB at wavelengths of 1.30 and 1.55 μm. The fabricated single-mode strip-loaded waveguides proved to be suitable for application of the semiconductor waveguide into monolithically integrated optical circuits  相似文献   

13.
A laser-beam writing system is developed for large-area optical waveguide fabrication. Single-mode embedded channel optical waveguides are successfully fabricated on both 4- and 8-in silicon substrates using deuterated fluoromethacrylate polymers by laser-beam writing in photoresist and dry etching. The propagation loss of the waveguides is as low as 0.1 dB/cm at 1.3 μm  相似文献   

14.
Using Ni diffusion into LiTaO3 below the Curie temperature for the fabrication of optical waveguides was presented for the first lime. Ordinary and extraordinary polarization waveguide modes were obtained. The index distribution profiles of both modes were measured by a prism coupler. Loss in planar waveguides at 0.6328 μm is 0.7±0.1 dB/cm for the ordinary mode and 1.3±0.2 dB/cm for the extraordinary mode. Moreover, a Mach-Zehnder interferometer was fabricated by this method for electrooptic characterization. The measured half-wave voltage is 5.5 V and the extinction ratio is greater than 29 dB  相似文献   

15.
Low-loss single-mode semiconductor rib optical waveguides fabricated in GaAs-AlGaAs epitaxial layers are removed from GaAs substrates and bonded to transfer substrates using a benzocyclobutene organic polymer. Optical quality facets were obtained by cleaving through the transfer substrate. An average propagation loss of 0.39 and 0.48 dB/cm at 1.55 μm wavelength for TE and TM polarizations, respectively, were measured. This was on average 0.05 dB/cm greater than control guides fabricated in GaAs-AlGaAs epilayers on GaAs substrates with air as the top cladding. This demonstrates the feasibility of a process enabling semiconductor polymer integration and processing both sides of an epitaxial layer  相似文献   

16.
We proposed the simple and attractive fabrication method of nickel stamp with improved sidewall roughness for polymeric optical devices. For this, the imprinted optical devices patterns under optimum imprinting conditions were annealed to improve the sidewall roughness generated by the DRIE process in the silicon stamp fabrication. The annealed sidewall roughness is reduced to 24.6 nm, nearly decreasing by 76% compared with the result before the annealing. Then, low cost and durable nickel stamp with improved sidewall roughness was fabricated by the annealed polymeric patterns being used as original master for electroforming process. And, we verified the superiority of the improved nickel stamp by comparing the optical propagation losses for optical waveguides to be fabricated, respectively, using the nickel stamp and original silicon stamp. The optical waveguides fabricated by the imprint lithography using the improved nickel stamp was demonstrated that their optical losses were reduced as 0.21 dB/cm, which was less than the propagation loss for polymeric waveguides using the conventional original silicon stamp. This result could show the effectiveness of the fabricated nickel stamp with improved sidewall roughness. Furthermore, we were able to successfully fabricate a polymeric 1 × 8 beam splitter device using the improved nickel stamp. And, the insertion loss for eight channels obtained to be from 10.02 dB to 10.91 dB.  相似文献   

17.
Proton-exchanged optical waveguides have been fabricated in z-cut LiNbO/sub 3/ using a new proton source: stearic acid. These waveguides were characterized optically and were found to exhibit a step index profile with Delta n=0.118 measured at 0.633 mu m. The propagation losses were typically around 1.5 dB/cm, and the diffusion constant and the activation energy for the proton-exchange process were measured to be 5*10/sup 6/ mu m/sup 2//h and 69 kJ/mol, respectively.<>  相似文献   

18.
This paper describes the fabrication and characterization of optical/electrical printed circuit boards (O/E-PCB) with embedded multimodal step index (MM-SI) waveguides and integrated out-of-plane micromirrors (IMMs) for three-dimensional (3-D) optical interconnects. Optical circuitry is built up on PCBs using UV lithography; 45/spl deg/ input/output (I/O) couplers are fabricated by inclined exposure. Commercial polymers are used as optical core and cladding materials. Critical mirror properties of angle, surface quality, reflectivity, and coupling efficiency are characterized experimentally and theoretically. Optical and scanning electron microscopy, white light interferometry, and fiber scanning method are used in the investigations. Sloping profiles measured as a function of the incident light showed the attainment of mirror angles of /spl alpha/=36/spl deg/-45/spl deg/ with /spl plusmn/2/spl deg/ consistency. Near-field optical imaging with a white light source showed that out-of-plane beam turning was achieved. Topography investigations revealed a rectilinear negative tapering shape regardless of the incoming beam angle or type of substrate. However, higher substrate reflectancy was observed to lower the mirror angle. The average propagation loss measured for 10-cm-long waveguides at /spl lambda/=850 nm by the cut-back method was 0.60 dB/cm; the excess loss calculated for the mirror coupling was 1.8-2.3 dB. The results showed that the IMMs can be incorporated in O/E-PCBs to couple light in and out of planar waveguides. Furthermore, the presented results indicate that optical waveguides with integrated micromirrors for optical 3-D wiring can be produced compatible with volume manufacturing techniques.  相似文献   

19.
Polymeric large-core (47 μm×41 μm) optical waveguides for optical interconnects have been fabricated by using a rubber molding process. For low-cost low-loss large-core waveguides, our newly developed thick-photoresist patterning process is used for a master fabrication. Also a low-loss thermocurable polymer, perfluorocyclobutane (PFCB), is used in fabricating optical waveguides by rubber molding for the first time. The propagation loss is measured to be 0.4 dB/cm at the wavelength of 1.3 μm, and 0.7 dB/cm at the wavelength of 1.55 μm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号