首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Successful technological innovation frameworks are based on synergistic packages of technology-push and demand-pull measures. As the massive deployment of premature renewable energy technologies risks becoming very expensive, the debate on the optimal trajectory of renewable technologies should explicitly consider the balance between deployment incentives and R&D efforts.This paper explores this balance regarding wind and PV technology support in Europe. Based on rather conservative estimates, we calculate future deployment costs and compare these figures to the current public investments in PV and wind R&D. We find that, today, for each Euro spent on R&D to develop future technologies, 35 to 41 Euros are spent on the deployment of existing technologies. Furthermore, private PV and wind technology companies tend to underinvest in R&D for various reasons. In an alternative scenario, we assess the optimal R&D efforts for the PV and wind sectors based on a 7% R&D-to-sales benchmark that is typical for engineering sectors. If public R&D efforts would increase according to this benchmark, and hence compensate for the private underinvestments in R&D, pull/push ratios between 6 and 8 could be achieved. This leads us to conclude that the current balance between deployment and R&D is far from optimal.  相似文献   

2.
《Energy Policy》2006,34(17):2601-2608
Technological innovation is fundamental for rendering the energy economy cleaner and more efficient with concomitant economic, developmental, and environmental benefits. This paper discusses aspects of R&D and ‘learning-by-doing,’ the main contributors to technological change that are complementary yet inter-linked. The relationship between the level of national energy R&D investments and changes in the trajectory of the country's energy system is complex; targeted efforts to promote deployment of new energy technologies play a major role in translating the results of R&D activities to changes in the energy system. Learning-by-doing is an important element of deployment, but it remains largely poorly understood. Hence this phenomenon needs to be ‘unpacked’ and its various aspects analyzed in detail, so as to allow better design of early deployment efforts to enhance learning gains. This paper highlights how public R&D and deployment efforts must work in tandem to expand the portfolio, and realize the potential, of new and improved energy technologies.  相似文献   

3.
In this paper we standardize, compare, and aggregate results from thirteen surveys of technology experts, performed over a period of five years using a range of different methodologies, but all aiming at eliciting expert judgment on the future cost of five key energy technologies and how future costs might be influenced by public R&D investments. To enable researchers and policy makers to use the wealth of collective knowledge obtained through these expert elicitations we develop and present a set of assumptions to harmonize them. We also aggregate expert estimates within each study and across studies to facilitate the comparison. The analysis showed that, as expected, technology costs are expected to go down by 2030 with increasing levels of R&D investments, but that there is not a high level of agreement between individual experts or between studies regarding the technology areas that would benefit the most from R&D investments. This indicates that further study of prospective cost data may be useful to further inform R&D investments. We also found that the contributions of additional studies to the variance of costs in one technology area differed by technology area, suggesting that (barring new information about the downsides of particular forms of elicitations) there may be value in not only including a diverse and relatively large group of experts, but also in using different methods to collect estimates.  相似文献   

4.
The relationship between R&D investments and technical change is inherently uncertain. In this paper we combine economics and decision analysis to incorporate the uncertainty of technical change into climate change policy analysis. We present the results of an expert elicitation on the prospects for technical change in advanced solar photovoltaics. We then use the results of the expert elicitations as inputs to the MiniCAM integrated assessment model, to derive probabilistic information about the impacts of R&D investments on the costs of emissions abatement.  相似文献   

5.
This paper analyses optimal investments in innovation when dealing with a stringent climate target and with the uncertain effectiveness of R&D. The innovation needed to achieve the deep cut in emissions is modeled by a backstop carbon-free technology whose cost depends on R&D investments. To better represent the process of technological progress, we assume that R&D effectiveness is uncertain. By means of a simple analytical model, we show how accounting for the uncertainty that characterizes technological advancement yields higher investments in innovation and lower policy costs. We then confirm the results via a numerical analysis performed with a stochastic version of WITCH, an energy–economy–climate model. The results stress the importance of a correct specification of the technological change process in economy–climate models.  相似文献   

6.
Are public R&D programs really effective in developing innovative technologies? How many technologies developed in these programs have been successfully commercialized? What are the key factors for successful commercialization and diffusion in the market? This paper tries to answer these questions by examining the Japanese experience of public R&D in demand-side energy efficiency, focusing on two major projects conducted in the 1980s and 1990s. It is found that of the 34 technologies developed in the two projects, only seven have been commercialized so far, four of those seven have only a very limited number of installations, and only one has a growing market. The results show that, while public R&D investments have a high risk of failure, they can bring new technologies to the market after a certain lead time. In addition, several factors resulting in the success or failure of commercialization/diffusion are identified, such as long-term R&D support by the government, a marketing strategy to respond to and influence market demand, and combination of R&D and deployment policy.  相似文献   

7.
This paper presents an analysis of the effect of enhanced research and development (R&D) efforts for a set of low-carbon power technologies on the development of the European energy sector. It applies a methodology using the concept of Two-Factor-Learning, which quantitatively links trends in technology cost to both accumulated R&D investments and production volumes. The impacts of the latter on the energy sector are then simulated in a consistent manner with the POLES global energy model. On this basis, it compares the total system costs of an assumed increase in worldwide R&D investments that for the EU are in line with proposals made in its European Strategic Energy Technology Plan to a baseline development. It finds that an increase in research efforts at a global level will contribute to reducing the costs of currently less mature low-carbon technologies, thus accelerating their market entry. When comparing two scenarios that both fulfil the EU's 2020 energy and climate objectives and differing only in their R&D investment levels, the reduced technology costs allow EU support policies for renewables and carbon values to be reduced, and the cumulative (discounted) benefit of the accelerated research efforts is positive in the long term.  相似文献   

8.
Photovoltaics (PV) is an eco-friendly and green technology, as a renewable energy source, with the aim of minimizing carbon dioxide emission into the atmosphere. The Korean government has financed various domestic installations as well as research and development (R&D) programs to enter and develop a lead in the worldwide PV market. In this study, R&D investments in the area of PV are analyzed in terms of the respective ministry, performer, research characteristics, PV materials and output levels in detail. The Korean government in the Fiscal year (FY) 2010 provided $178 million dollars from R&D funds for PV development. 74% of the R&D funds in the context of PV has been invested by the Ministry of Knowledge Economy (MKE). Expenditures for R&D programs in terms of PV are mainly funded by small-medium companies (40%), and the portion of the R&D investment in crystalline silicon solar cells is the highest in terms of materials. In spite of the high levels of R&D investment in PV, the output for commercialization was relatively lower compared to the R&D input in FY 2009–2010. With these results, we suggested to develop various solutions to improve the R&D investment efficiency for PV technology in Korea.  相似文献   

9.
The rate of climate change due to global warming has become a substantial concern and appeared as a real-world phenomenon in the recent years. However, it is imperative to know how business enterprises alter such concern. Recent studies involve a variety of firm-level factors to create a robust link between business enterprises' environmental and financial performance. However, little is known regarding the role of research and development (R&D) investment on firms' environmental performance. Using a firm-level data for the period 2004–2016 from G-6 countries, this study empirically investigates how R&D investment affects the firm environmental performance measured by energy and carbon emissions intensities. We find that R&D investment improves the firm's environmental performance consistent with the theoretical argument of natural resource-based view (NRBV). Our findings are robust to alternative econometric specifications, alternative variable specifications, and sub-samples. Our findings offer novel insights to the policymakers, business managers, and regulators.  相似文献   

10.
The Europe 2020 strategy currently promotes energy efficiency and innovation through disconnected targets focusing on either energy or R&D. Similar policies indicate that in practice, these two concepts are usually perceived as mutually exclusive. Furthermore, evidence in the literature regarding the relationship between R&D and energy efficiency is still highly limited. This exploratory study aims to address this gap by investigating the link between innovation practices and energy efficiency through a multiple case study of 30 foundries in Northern Italy. We analysed the firms' innovativeness, measured by internal R&D and Open Innovation practices (inbound and outbound), and energy efficiency, measured by specific energy consumption, level of adoption of energy-efficient technologies and barriers to energy efficiency. The results seem to show that those foundries complementing internal R&D with inbound practices have a higher level of energy efficiency, a higher level of adoption of available technologies, and a lower perception of barriers to efficiency improvements. This finding suggests that diversifying innovation practices could lead to better performance with respect to all three indicators of energy efficiency analysed. This study contributes to understanding how more innovative firms can be more energy efficient, providing interesting highlights for managers and policymakers.  相似文献   

11.
The purpose of this study is to apply managerial economics and methods of decision analysis to study the optimal pattern of innovation activities for development of new energy technologies in developing countries. For this purpose, a model of energy research and development (R&D) planning is developed and it is then linked to a bottom-up energy-systems model. The set of interlinked models provide a comprehensive analytical tool for assessment of energy technologies and innovation planning taking into account the specific conditions of developing countries. An energy-system model is used as a tool for the assessment and prioritization of new energy technologies. Based on the results of the technology assessment model, the optimal R&D resources allocation for new energy technologies is estimated with the help of the R&D planning model. The R&D planning model is based on maximization of the total net present value of resulting R&D benefits taking into account the dynamics of technological progress, knowledge and experience spillovers from advanced economies, technology adoption and R&D constraints. Application of the set of interlinked models is explained through the analysis of the development of solar PV in Iranian electricity supply system and then some important policy insights are concluded.  相似文献   

12.
In this paper, we ask an important question: can firm-level environmentally sustainable practices and research and development (R&D) intensity individually and jointly affect corporate risk-taking? Using firm-level data from 41 countries spanning 2002–2013, we find environmentally sustainable practices and R&D intensity enhance the risk-taking of firms. Voluntary sustainable practices generate a positive and significant effect on corporate risk-taking. We also find that country-level determinants play a complementary role. Firms operating in countries with better intellectual property rights protection and overall infrastructure benefit more from environment-friendly practices and R&D intensity. Further, we find that ESI has a positive effect on risk taking in countries with higher CO2 emissions per capita, energy usages per capita and more stringent environmental policies. These results are robust after correcting for potential endogeneity, alternative measures of R&D intensity or ESI score. Overall, our findings provide key insights on policy recommendations at the national and international levels.  相似文献   

13.
Green electricity market development: Lessons from Europe and the US   总被引:1,自引:0,他引:1  
This study compares the development and implementation of green electricity policies in Germany, the Netherlands, Sweden, and the United States, a set of countries applying a range of policy instruments to encourage electricity from renewable energy sources. A general tendency is identified that policies shift emphasis from R&D stimulation towards dissemination and market application of renewable energy technologies. We argue that in light of the long term nature of policy goals on energy security, mitigation of climate change, and environmental protection, the applied range of policy instruments may be lacking in providing incentives for the long term development of new technologies. Clarifying policy objectives would allow careful selection of policy instruments, including support for R&D. Improved capacity building for policy implementation is also important.  相似文献   

14.
Coal use accounts for a very large proportion of electricity production in China. Using a recently developed coarsened exact matching (CEM) technique, this paper examines the impact of research and development (R&D) activities on the performance of firms in China's coal mining industry. Our empirical results reveal that firms in China's coal industry that conduct R&D are more productive and their sales are higher. However, as far as the firm profitability and market shares are concerned, whether or not a firm in China's coal industry conducts R&D makes no difference. We find that foreign direct investment in China's coal mining industry leads to a significant decrease in the market share of domestic firms and its impact on productivity, sales and profitability of domestic firms is insignificant. The empirical results presented in this paper suggest that policies that encourage domestic firms in China's coal mining industries to conduct R&D can increase domestic production thereby reducing reliance on imports. Furthermore, productivity gains arising from R&D activities can also help Chinese mining firms to improve their competitive position in the international market. However, there is a need for restricting foreign direct investment in China's coal mining industry.  相似文献   

15.
The economic costs of stabilizing greenhouse gas concentrations over the coming century depend critically on the development of new technologies in the energy sector. Our research and development (R&D) investment strategy is the control variable for technology availability. This paper proposes an analytic framework for determining optimal R&D investment allocation and presents some numerical results to demonstrate the implementation of the methodology. The value of technological advance in three targeted areas–fossil-based generation, renewables, and carbon capture and storage–is represented by the increase in expected welfare in the presence of an emissions policy constraint of initially uncertain stringency. R&D expenditure increases the probability of advance. Optimal investment is determined by its relationship with success probability, which is assumed to exhibit decreasing returns to scale, relative to the value of success. While the numerical results are speculative, the paper offers insights into the nature of an optimal technology strategy for addressing climate change.  相似文献   

16.
This paper touches upon two key issues related to clean technology deployment in emerging countries: what is the life cycle of R&D and innovation? And where does the R&D funding come from? The paper holds that the innovation climate, system and process in emerging countries do not follow the same trajectory as those in developed countries. Crafting an innovation model that is adapted to the needs and conditions of emerging countries thus is critical. Through revealing the four phases of an innovation life cycle in emerging countries, the paper highlights the dominant role of the public sector in clean technology R&D.  相似文献   

17.
18.
Investment in energy research and development in the U.S. is declining despite calls for an enhancement of the nation's capacity for innovation to address environmental, geopolitical, and macroeconomic concerns. We examine investments in research and development in the energy sector, and observe broad-based declines in funding since the mid-1990s. The large reductions in investment by the private sector should be a particular area of concern for policy makers. Multiple measures of patenting activity reveal widespread declines in innovative activity that are correlated with research and development (R&D) investment—notably in the environmentally significant wind and solar areas. Trends in venture capital investment and fuel cell innovation are two promising cases that run counter to the overall trends in the sector. We draw on prior work on the optimal level of energy R&D to identify a range of values which would be adequate to address energy-related concerns. Comparing simple scenarios based on this range to past public R&D programs and industry investment data indicates that a five to ten-fold increase in energy R&D investment is both warranted and feasible.  相似文献   

19.
In areas such as climate change, the recent economic literature has been emphasizing and addressing the pervasive presence of uncertainty. This paper considers a new and salient form of uncertainty, namely uncertainty regarding the environmental characteristics of ‘green’ innovations. Here, R&D may generate both backstop technologies and technologies that turn out to involve a new pollution problem (‘boomerangs’). In the optimum, R&D will therefore typically be undertaken more than once. Extending results from multi-stage optimal control theory, we present a tractable model with a full characterization of the optimal pollution and R&D policies and the role of uncertainty. In this setting, (i) the optimal R&D program is defined by a research trigger condition in which the decision-maker's belief about the probability of finding a backstop enters in an intuitive way; (ii) a decreasing probability of finding a backstop leads to the toleration of higher pollution levels, slower R&D, a slower turnover of technologies, and an ambiguous effect on the expected number of innovations; (iii) learning about the probability of a backstop is driven by failures only and leads to decreasing research incentives; and (iv) small to moderate delays in the resolution of technological uncertainty do not affect the optimal policy.  相似文献   

20.
This paper is a critical assessment of the current balance of efforts towards energy research and development (R&D) and the promotion of low-carbon electricity technologies in the UK. We review the UK's main technological options and their estimated cost ranges in the medium term. We contrast the energy R&D spending with the current and expected future cost of renewable promotion policies and point out the high cost of carbon saving through existing renewable promotion arrangements. We also note that liberalisation of the electricity sector has had significant implications for the landscape of energy R&D in the UK. We argue that there is a need for reappraisal of the soundness and balance of the energy R&D and renewable capacity deployment efforts towards new energy technologies. We suggest that the cost-effectiveness of UK deployment policies needs to be more closely analysed as associated costs are non-trivial and expected to rise. We also make a case for considering increasing the current low level of energy R&D expenditure. Much of energy R&D is a public good and we should consider whether the current organisation of R&D effort is fit for purpose. We argue that it is important to build and maintain the research capability in the UK in order to absorb spillovers of technological progress elsewhere in the world. Against this background, the recent signs that an energy R&D renaissance could be underway are therefore positive and welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号