首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The laminar boundary layer flow and heat transfer of Casson non‐Newtonian fluid from a semi‐infinite vertical plate in the presence of thermal and hydrodynamic slip conditions is analyzed. The plate surface is maintained at a constant temperature. Increasing velocity slip induces acceleration in the flow near the plate surface and the reverse effect further from the surface. Increasing velocity slip consistently enhances temperatures throughout the boundary layer regime. An increase in thermal slip parameter strongly decelerates the flow and also reduces temperatures in the boundary layer regime. An increase in the Casson rheological parameter acts to elevate considerably the skin friction (non‐dimensional wall shear stress) and this effect is pronounced at higher values of tangential coordinate. Temperatures, however, are very slightly decreased with increasing values of Casson rheological parameter. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21115  相似文献   

2.
A numerical computation to analyze the heat and mass transfer mechanism of a magnetohydrodynamic radiative Casson fluid flow over a wedge in the presence of Joule heating, viscous dissipation, and chemical reaction is carried out in this study. The flow-governing partial differential equations are transformed as ordinary differential equations by relevant similarity transformations and subsequently resolved by Runge–Kutta numerical approach with a shooting technique. The characteristics of momentum, thermal, and concentration border layers due to various influencing parameters are graphically outlined and numerically computed by MATLAB software. We present comparative solutions to construe the relative outcomes of Casson fluid versus Newtonian fluid. Computational outcomes of friction factor and Nusselt and Sherwood numbers are tabulated with suitable interpretations. An increase in skin friction values is noted due to an increment in the thermal Grashof number, whereas a decrease is observed due to the chemical reaction parameter. The Casson fluid displays a superior heat transfer mechanism than the Newtonian fluid. Obtained outcomes are in good agreement with the prevailing literature in the limiting case.  相似文献   

3.
The Marangoni flow is involved with microgravity and earth gravity, which causes undesirable effects in crystal growth experiments. Crystal growth experiments were designed in such a manner so as to appraise MIR (space station), which is one of the best platforms for protein crystallization and radiation experiments. In this article, a model is proposed with a stagnation point and a Casson fluid flow at the interface of the plate in the presence of Marangoni convection influenced by a magnetic field and chemical reaction. Furthermore, it is considered that both temperature and concentration surface tension vary linearly with the interface. It is important to choose similarity transformations for implementing nonlinear differential equations into linear ordinary differential equations. We solved the system of differential equations using fourth order Range‐Kutta method with suitable shooting techniques, and the results are displayed through graphs. A comparison is made with the earlier existing literature, and it shows a very good agreement. The results and a detailed discussion of velocity, temperature, and concentration have been shown graphically. The favorable and unfavorable buoyancy force to Marangoni flow, the features of temperature and concentration field, have been investigated.  相似文献   

4.
The problem of an unsteady magnetohydrodynamic stagnation point flow of an incompressible viscous fluid over a shrinking sheet is discussed in the presence of thermal radiation and boundary slip, which has not been documented to date in the literature. The governing boundary‐layer equations are transformed to high order nonlinear and ordinary differential equations by similarity transformations and then solved numerically. The effects of magnetic parameter, unsteadiness parameter, radiation parameter, velocity, and thermal slip parameters on velocity and temperature are analyzed and discussed. It is found that dual solutions of both velocity and temperature fields exist for negative values of the velocity ratio parameter. The results indicate that dual solution domains of velocity and temperature expand as the unsteadiness parameter increases.  相似文献   

5.
The present research study examines the magneto-hydrodynamic natural convection visco-elastic boundary layer of Casson fluid past a nonlinear stretching sheet with Joule and viscous dissipation effects under the influence of chemical reaction. To differentiate the visco-elastic nature of Casson fluid with Newtonian fluids, an established Casson model is considered. The present physical problem is modeled by utilizing the considered geometry. The resulting system of coupled nonlinear partial differential equations is reduced to a system of nonlinear ordinary differential equations by applying suitable similarity transformations. Numerical solutions of these reduced nondimensional governing flow field equations are obtained by applying the Runge-Kutta integration scheme with the shooting method (RK-4). The physical behavior of different control parameters is described through graphs and tables. The present study describes that the velocity and temperature profiles decreased for increasing values of Casson fluid parameter. Velocity field diminished for the increasing nonlinear parameter whereas velocity profile magnified for increasing free convection parameter. Thermal field enhanced with increasing magnetic parameter in the flow regime. The concentration profile decreased for the rising values of the chemical reaction parameter. The magnitude of the skin-friction coefficient enhanced with increasing magnetic parameter. Increasing Eckert number increases the heat transfer rate and increasing chemical reaction parameter magnifies the mass transfer rate. Finally, the similarity results presented in this article are excellently matched with previously available solutions in the literature.  相似文献   

6.
In this paper, an attempt has been made to analyze the effects of various parameters, such as Soret and Dufour effects, chemical reaction, magnetic field, porosity on the fluid flow, and heat and mass transfer of an unsteady Casson fluid flow past a flat plate. Convective boundary conditions in heat and mass transfer and slip constant on velocity have been taken into account for analysis. The governing equations of the model have been solved numerically using the MATLAB program bvp4c. The impact of various parameters of the model on the velocity, temperature, and concentration profiles has been analyzed through different graphs. To get an insight into the physical quantities of engineering interest, viz, skin friction, Sherwood number, and Nusselt number, their numerical values have been computed for various parameters. The range of the parameters used in numerical computations are , , , , , , and . It has been noticed from the tabulated values that the skin friction gets enhanced with the increase in the thermal and solutal Grashof number, whereas its reverse effects have been observed with an increase in the Biot number. In limiting case, the present study is also compared with the available results in the literature.  相似文献   

7.
A numerical analysis has been carried out to investigate the problem of MHD boundary‐layer flow and heat transfer of a viscous incompressible fluid over a moving vertical permeable stretching sheet with velocity and temperature slip boundary condition. A problem formulation is developed in the presence of radiation, viscous dissipation, and buoyancy force. A similarity transformation is used to reduce the governing boundary‐layer equations to coupled higher‐order nonlinear ordinary differential equations. These equations are solved numerically using the fourth‐order Runge–Kutta method along with shooting technique. The effects of the governing parameters such as Prandtl number, buoyancy parameter, slip parameter, magnetic parameter, Eckert Number, suction, and radiation parameter on the velocity and temperature profiles are discussed and shown by plotting graphs. It is found that the temperature is a decreasing function of the slip parameter ST. The results also indicate that the cooling rate of the sheet can be improved by increasing the buoyancy parameter. In addition the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. The numerical results are compared and found to be in good agreement with previously published results on special cases of the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 412–426, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21086  相似文献   

8.
The aim of the current study is to explore the effects of heat and mass transfer on unsteady chemically reacted Casson liquid flow over an exponentially accelerated vertical plate in a porous medium. It is assumed that the bounding plate has varying temperatures as well as concentrations in a porous medium under a uniform magnetic field. This phenomenon is modeled in the form of a system of partial differential equations (PDEs) with boundary conditions. The governing dimensionless PDEs are solved using Laplace transform method for velocity, temperature, and concentration. The impact of nondimensional parameters, which are controlling the flow like Casson parameter, Soret number, magnetic parameter, heat generation parameter, Prandtl number, radiation parameter, and Schmidt number is analyzed through graphs. The incremental values of the Casson fluid parameter lead to a reduction in velocity and discovered that for large values of the Casson parameter, the fluid is near to the Newtonian fluid. Also, the Sherwood number increases with enhancing dissimilar estimators of the Schmidt and Soret numbers. A comparison has been made with the published work (Kataria et al.) for a particular case, which was in good agreement.  相似文献   

9.
An analysis is presented to investigate the effects of a chemical reaction on an unsteady flow of a micropolar fluid over a stretching sheet embedded in a non‐Darcian porous medium. The governing partial differential equations are transformed into a system of ordinary differential equations by using similarity transformation. The resulting nonlinear coupled differential equations are solved numerically by using a fourth‐order Runge–Kutta scheme together with shooting method. The influence of pertinent parameters on velocity, angular velocity (microrotation), temperature, concentration, skin friction coefficient, Nusselt number, and Sherwood number has been studied and numerical results are presented graphically and in tabular form. Comparisons with previously published work are performed and the results are found to be in excellent agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21090  相似文献   

10.
The present model concentrates on entropy generation on a steady incompressible flow of a Casson liquid past a permeable stretching curve surface through chemical reaction and magnetic field effects. The exponential space-dependent heat source cum heat and mass convective boundary conditions are accounted for. The resulting nonlinear boundary layer model is simplified by the transformation of similarity. Chebyshev spectral technique is involved for obtaining numerical results of the converted system of the mathematical models. Behavior of the determining thermo-physical parameters on the profiles of velocity, temperature, concentration, skin friction, heat, mass transfer rate, rate of entropy generation, and finally the Bejan number are presented. The major point of the present investigation show that the curvature term weakens the mass transfer profile as the fluid temperature reduces all over the diffusion regime. A decrease in heat generation strengthens the species molecular bond, which prevents free Casson particle diffusion. Furthermore, the mass transfer field diminishes in suction and injection flow medium.  相似文献   

11.
The endeavor of this study is to explore the nature of dual solutions (steady and unsteady) for the Casson fluid flow with the simultaneous consequences of both thermal and mass transmissions. The flow passes above an absorbent elongating sheet in the existence of a constant magnetic field. The supported leading equations are remodeled into a set of solvable forms with the assist of suitable similarity variables and hence deciphered utilizing the “MATLAB routine bvp4c scheme.” Due to the sudden changes in the surface with time, the temperature and flow behavior over the sheet also change, and hence dual-type flow solutions exist. Stability scrutiny is implemented to examine the less (more) stable and visually achievable solutions. From this study, we have achieved many interesting facts, among them, we can use magnetic and Casson fluid parameters to control the motion of the fluid and to enlarge of thermal transmission of the fluid. This flow model has many important applications in different physical fields, such as engineering sciences, medical sciences, and different industrial processes. One of the most important results, which has been achieved from this investigation, is that the Prandtl number enriches the heat transfer rate of the fluid at the surface during the time-independent case under the suction environment. Also, the chemical reaction parameter helps to enhance the mass accumulation rate of the fluid in both cases.  相似文献   

12.
In this study, we analyzed three‐dimensional magnetohydrodynamic non‐Newtonian and Newtonian fluid motion, transfer of heat and mass over a stretching surface with Brownian flow, thermophoresis, and Dufour effects. By Runge‐Kutta based shooting method, the transformed governing equations are solved numerically. With the facilitate of tables and graphs, momentum, energy and mass profiles along with the skin friction coefficient, local Nusselt number, and Sherwood number are analyzed in the influence of nondimensional parameters. It is established that enhance the stretching ratio parameter improves the energy and concentration transfer rate. The transfer of energy and concentration rate in the Newtonian fluid is relatively low while compared with non‐Newtonian fluid.  相似文献   

13.
14.
This article presents the two-dimensional mixed convective MHD unsteady stagnation-point flow with heat and mass transfer on chemically reactive Casson fluid towards a vertical stretching surface. This fluid flow model is influenced by the induced magnetic field, thermal radiation, viscous dissipation, heat absorption, and Soret effect with convective boundary conditions and solved numerically by shooting technique. The calculations are accomplished by MATLAB bvp4c. The velocity, induced magnetic field, temperature, and concentration distributions are displayed by graphs for pertinent influential parameters. The numerical results for skin friction coefficient, rate of heat, and mass transfer are analyzed via tables for different influential parameters for both assisting and opposing flows. The results reveal that the enhancement of the unsteadiness parameter diminishes velocity and induced magnetic field but it rises temperature and concentration distributions. Moreover, higher values of magnetic Prandtl number enhance Nusselt number and skin friction coefficient, but it has the opposite impact on Sherwood number. We observe that the amplitude is higher in assisting flow compared to opposing flow for skin friction coefficient and Nusselt number whereas opposite trends are noticed for Sherwood number. Our model will be applicable to various magnetohydrodynamic devices and medical sciences.  相似文献   

15.
It is worth remarking that little is known about generalized differential quadrature analysis of three‐dimensional flow of non‐Newtonian Casson fluid in the presence of Lorentz force, thermal radiation, haphazard motion of tiny particles, thermomigration of these tiny particles due to temperature gradient, heat source, significant conversion of kinetic energy into internal energy, first‐order chemical reaction, convectively heated horizontal wall, and zero nanoparticles mass flux at the stretching surface. The revised form of Buongiorno's nanofluid model accounted for significant influences of Brownian motion and thermophoresis. The similarity solution was complemented with a powerful collocation procedure based on the generalized differential quadrature method and Newton–Raphson iterative scheme to achieve accuracy and convergent outcomes. The numerical effects disclose that the Casson nanofluid parameter slows down the axial velocities in both directions. Also, the unsteadiness parameter tends to decline generally the temperature throughout the medium and decrease particularly the concentration profile away from the stretching surface. These examinations are applicable in the field of biomechanics, polymer processing, and for characterizing the cement slurries.  相似文献   

16.
17.
This paper examines thermal‐diffusion and diffusion‐thermo effects on the fully developed MHD flow of a micropolar fluid through a porous space in a vertical channel with asymmetric wall temperatures and concentrations. The homotopy analysis method (HAM) is adopted to obtain the approximate analytical solution for the velocity, micro‐rotation, temperature, and concentration field. The convergence and the accuracy of the solutions are discussed. The role of pertinent parameters on the heat and mass transfer characteristics of the flow are presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(6): 561–576, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21100  相似文献   

18.
An attempt has been made to study the entropy generation analysis of couple stress fluid flow in an annulus between two concentric rotating vertical cylinders. There is a porous lining attached to the inside of an outer cylinder. The flow is under the influence of a radial magnetic field. The flow in the annular gap is caused by rotation of the cylinders. The Stokes couple stress flow model is employed. The flow in the porous sleeve is governed by Darcy's law. The velocity, temperature, entropy generation number, Bejan number, wall shear stress and heat transfer rate at the inner and outer cylinders are obtained numerically by employing a finite difference scheme with vanishing of couple stresses on the boundary. The effect of relevant parameters on the flow and entropy generation rate are discussed and depicted through graphs.  相似文献   

19.
A mathematical study is presented for the collective influence of the buoyancy parameter, convective boundary parameter and temperature dependent viscosity on the steady mixed convective laminar boundary flow of a radiative magneto‐micropolar fluid adjacent to a vertical porous stretching sheet embedded in a Darcian porous medium. The fluid viscosity is assumed to vary as an inverse linear function of temperature. Using appropriate transformations, the governing equations of the problem under consideration are transformed into a system of dimensionless nonlinear ordinary differential equations, which are then solved with the well‐tested, efficient finite element method. The results obtained are depicted graphically to illustrate the effect of the various important controlling parameters on velocity, microrotation, and temperature functions. The skin friction coefficient, wall couple stress, and the rate of heat transfer have also been computed and presented in tabular form. Comparison of the present numerical results with earlier published data has been performed and the results are found to be in good agreement, thus validating the accuracy of the present numerical code. The study finds applications in conducting polymer flows in filtration systems, trickle bed magnetohydrodynamics in chemical engineering, electro‐conductive materials processing, and so on.  相似文献   

20.
In the current communication, three-dimensional Williamson fluid flow past a bidirectional inclined stretching plate with novel Hall current, nonuniform heat source/sink, and nth-order chemical reaction features are investigated. Rosseland's diffusion model is defined for the radiation heat transfer. The nonlinear governing derivative equations satisfying the flow are transmuted to the coupled derivative equations by employing the local similarity quantities and then solved numerically through the Runge–Kutta–Fehlberg method utilizing the shooting quadrature. An inclusive analysis is reported via graphs for the flow rate field, temperature, and concentration distributions for different evolving terms of immense concern. Wall dragging effect and wall heat gradient and wall concentration gradient have been examined, plotted, and described. The detailed geometry reveals that dimensionless velocity field is monotonically rising as the Hall parameter rises. The chemical reaction concentration for the Williamson fluid is enhanced with expanding values of the magnetic field parameter. Transitional values of wall stress components upturn with an increase in Hall parameter while the Williamson term is boosted. Nusselt number is reduced as the Williamson term rises and the Sherwood number enhances with a rising chemical reaction term. The results are verified for limiting cases by comparing with various investigations and found to have excellent accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号