首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The poor stability and aggregation problem of CsPbBr3 quantum dots (QDs) in air are great challenges for their future practical application. Herein, a simple and effective ligand‐modification strategy is proposed by introducing 2‐hexyldecanoic acid (DA) with two short branched chains to replace oleic acid (OA) with long chains during the synthesis process. These two short branched chains not only maintain their colloidal stability but also contribute to efficient radiative recombination. The calculations show that CsPbBr3 QDs with DA modification (CsPbBr3‐DA QDs) have larger binding energy than CsPbBr3 QDs with OA (CsPbBr3‐OA QDs), resulting in significantly enhanced stability. Due to the strong binding energy between DA ligands and QDs, CsPbBr3‐DA QDs exhibit no aggregation phenomenon even after stored in air for more than 70 d, and CsPbBr3‐DA QDs films can maintain 94.3% of initial PL intensity after 28 d, while in CsPbBr3‐OA QDs films occurs a rapid degradation of PL intensity. Besides, the enhanced amplified spontaneous emission (ASE) performance of CsPbBr3‐DA QDs films has been demonstrated under both one‐ and two‐photon laser excitation. The ASE threshold of CsPbBr3‐DA QDs films is reduced by more than 50% and their ASE photostability is also improved, in comparison to CsPbBr3‐OA QDs films.  相似文献   

2.
All‐inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar‐architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD‐) sensitized all‐inorganic CsPbBr3 perovskite inverse opal (IO) films via a template‐assisted, spin‐coating method. CsPbBr3 IO introduces slow‐photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr3, slow‐photon effect of CsPbBr3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron–hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double‐boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon‐to‐electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices.  相似文献   

3.
An X‐ray detector with high sensitivity would be able to increase the generated signal and reduce the dose rate; thus, this type of detector is beneficial for applications such as medical imaging and product inspection. The inorganic lead halide perovskite CsPbBr3 possesses relatively larger density and a higher atomic number in contrast to its hybrid counterpart. Therefore, it is expected to provide high detection sensitivity for X‐rays; however, it has rarely been studied as a direct X‐ray detector. Here, a hot‐pressing method is employed to fabricate thick quasi‐monocrystalline CsPbBr3 films, and a record sensitivity of 55 684 µC Gyair?1 cm?2 is achieved, surpassing all other X‐ray detectors (direct and indirect). The hot‐pressing method is simple and produces thick quasi‐monocrystalline CsPbBr3 films with uniform orientations. The high crystalline quality of the CsPbBr3 films and the formation of self‐formed shallow bromide vacancy defects during the high‐temperature process result in a large µτ product and, therefore, a high photoconductivity gain factor and high detection sensitivity. The detectors also exhibit relatively fast response speed, negligible baseline drift, and good stability, making a CsPbBr3 X‐ray detector extremely competitive for high‐contrast X‐ray detections.  相似文献   

4.
Stimulated emission depletion (STED) nanoscopy is one of the most promising super‐resolution imaging techniques for microstructure imaging. Commercial CdSe@ZnS quantum dots are used as STED probes and ≈50 nm lateral resolution is obtained. Compared with other quantum dots, perovskite CsPbBr3 nanoparticles (NPs) possess higher photoluminescence quantum yield and larger absorption cross‐section, making them a more effective probe for STED nanoscopy. In this study, CsPbBr3 NPs are used as probes for STED nanoscopy imaging. The fluorescence intensity of the CsPbBr3 sample is hardly weakened at all after 200 min irradiation with a 39.8 mW depletion laser, indicating excellent photobleaching resistance of the CsPbBr3 NPs. The saturation intensity of the CsPbBr3 NPs is extremely low and estimated to be only 0.4 mW (0.126 MW cm?2). Finally, an ultrahigh lateral resolution of 20.6 nm is obtained for a single nanoparticle under 27.5 mW STED laser irradiation in CsPbBr3‐based STED nanoscopy imaging, which is a tenfold improvement compared with confocal microscopy. Because of its high fluorescence stability and ultrahigh resolution under lower depletion power, CsPbBr3‐assisted STED nanoscopy has great potential to investigate microstructures that require super‐resolution and long‐term imaging.  相似文献   

5.
All‐inorganic photodetectors based on scattered CsPbBr3 nanoplatelets with lateral dimension as large as 10 µm are fabricated, and the CsPbBr3 nanoplatelets are solution processed governed by a newly developed ion‐exchange soldering mechanism. Under illumination of a 442 nm laser, the photoresponsivity of photodetectors based on these scattered CsPbBr3 nanoplatelets is as high as 34 A W?1, which is the largest value reported from all‐inorganic perovskite photodetectors with an external driven voltage as small as 1.5 V. Moreover, the rise and fall times are 0.6 and 0.9 ms, respectively, which are comparable to most of the state‐of‐the‐art all‐inorganic perovskite‐based photodetectors. All the material synthesis and device characterization are conducted at room temperature in ambient air. This work demonstrates that the solution‐processed large CsPbBr3 nanoplatelets are attractive candidates to be applied in low‐voltage, low‐cost, ultra highly integrated optoelectronic devices.  相似文献   

6.
All‐inorganic halide perovskites (IHPs) have attracted enormous attention due to their intrinsically high optical absorption coefficient and superior ambient stabilities. However, the photosensitivity of IHP‐based photodetectors is still restricted by their poor conductivities. Here, a facile design of hybrid phototransistors based on the CsPbBr3 thin film and indium tin oxide (ITO) nanowires (NWs) integrated into a InGaZnO channel in order to achieve both high photoresponsivity and fast response is reported. The metallic ITO NWs are employed as electron pumps and expressways to efficiently extract photocarriers from CsPbBr3 and inject electrons into InGaZnO. The obtained device exhibits the outstanding responsivity of 4.9 × 106 A W?1, which is about 100‐fold better than the previous best results of CsPbBr3‐based photodetectors, together with the fast response (0.45/0.55 s), long‐term stability (200 h in ambient), and excellent mechanical flexibility. By operating the phototransistor in the depletion regime, an ultrahigh specific detectivity up to 7.6 × 1013 Jones is achieved. More importantly, the optimized spin‐coating manufacturing process is highly beneficial for achieving uniform InGaZnO‐ITO/perovskite hybrid films for high‐performance flexible detector arrays. All these results can not only indicate the potential of these hybrid phototransistors but also provide a valuable insight into the design of hybrid material systems for high‐performance photodetection.  相似文献   

7.
Self‐powered photodetectors (PDs) based on inorganic metal halide perovskites are regarded as promising alternatives for the next generation of photodetectors. However, uncontrollable film growth and sluggish charge extraction at interfaces directly limit the sensitivity and response speed of perovskite‐based photodetectors. Herein, by assistance of an atomic layer deposition (ALD) technique, CsPbBr3 perovskite thin films with preferred orientation and enlarged grain size are obtained on predeposited interfacial modification layers. Thanks to improved film quality and double side interfacial engineering, the optimized CsPbBr3 (Al2O3/CsPbBr3/TiO2, ACT) perovskite PDs exhibit outstanding performance with ultralow dark current of 10?11 A, high detectivity of 1.88 × 1013 Jones and broad linear dynamic range (LDR) of 172.7 dB. Significantly, excellent long‐term environmental stability (ambient conditions >100 d) and flexibility stability (>3000 cycles) are also achieved. The remarkable performance is credited to the synergistic effects of high carrier conductivity and collection efficiency, which is assisted by ALD modification layers. Finally, the ACT PDs are successfully integrated into a visible light communication system as a light receiver on transmitting texts, showing a bit rate as high as 100 kbps. These results open the window of high performance all‐inorganic halide perovskite photodetectors and extends to rational applications for optical communication.  相似文献   

8.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) have emerged as attractive optoelectronic materials due to the excellent optical and electronic properties. However, their environmental stability, especially in the presence of water, is still a significant challenge for their further commercialization. Here, ultrahigh intrinsically water‐stable all‐inorganic quasi‐2D CsPbBr3 nanosheets (NSs) via aqueous phase exfoliation method are reported. Compared to conventional perovskite NCs, these unique quasi‐2D CsPbBr3 nanosheets present an outstanding long‐term water stability with 87% photoluminescence (PL) intensity remaining after 168 h under water conditions. Moreover, the photoluminescence quantum yields (PLQY) of quasi‐2D CsPbBr3 NSs is up to 82.3%, and these quasi‐2D CsPbBr3 NSs also present good photostability of keeping 85% PL intensity after 2 h under 365 nm UV light. Evidently, such quasi‐2D perovskite NSs will open up a new way to investigate the intrinsic stability of all‐inorganic perovskites and further promote the commercial development of perovskite‐based optoelectronic and photovoltaic devices.  相似文献   

9.
Self‐healing, where a modification in some parameter is reversed with time without any external intervention, is one of the particularly interesting properties of halide perovskites. While there are a number of studies showing such self‐healing in perovskites, they all are carried out on thin films, where the interface between the perovskite and another phase (including the ambient) is often a dominating and interfering factor in the process. Here, self‐healing in perovskite (methylammonium, formamidinium, and cesium lead bromide (MAPbBr3, FAPbBr3, and CsPbBr3)) single crystals is reported, using two‐photon microscopy to create damage (photobleaching) ≈110 µm inside the crystals and to monitor the recovery of photoluminescence after the damage. Self‐healing occurs in all three perovskites with FAPbBr3 the fastest (≈1 h) and CsPbBr3 the slowest (tens of hours) to recover. This behavior, different from surface‐dominated stability trends, is typical of the bulk and is strongly dependent on the localization of degradation products not far from the site of the damage. The mechanism of self‐healing is discussed with the possible participation of polybromide species. It provides a closed chemical cycle and does not necessarily involve defect or ion migration phenomena that are often proposed to explain reversible phenomena in halide perovskites.  相似文献   

10.
Developing low‐cost and high‐quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light‐emitting diodes (LEDs) is crucial for the next‐generation ultra‐high‐definition flexible displays. Here, there is a report on a room‐temperature triple‐ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward “ideal” perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD‐based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A‐site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W?1, respectively, which are the most‐efficient perovskite QLEDs with colloidal CsPbBr3 QDs as emitters up to now. These results demonstrate that the as‐obtained QD inks have a wide range application in future high‐definition QD displays and high‐quality lightings.  相似文献   

11.
In this work, CsPbBr3 and PbSe nanocomposites were synthesized to protect perovskite material from self-enlargement during reaction. UV absorption and photoluminescence (PL) spectra indicate that the addition of Se into CsPbBr3 quantum dots modified the electronic structure of CsPbBr3, increasing the band gap from 2.38 to 2.48 eV as the Cs:Se ratio increased to 1:3. Thus, the emission color of CsPbBr3 perovskite quantum dots was modified from green to blue by increasing the Se ratio in composites. According to X-ray diffraction patterns, the structure of CsPbBr3 quantum dots changed from cubic to orthorhombic due to the introduction of PbSe at the surface. Transmission electron microscopy and X-ray photoemission spectroscopy confirmed that the atomic distribution in CsPbBr3/PbSe composite clusters is uniform and the composite materials were well formed. The PL intensity of a CsPbBr3/PbSe sample with a 1:1 Cs:Se ratio maintained 50% of its initial intensity after keeping the sample for 81 h in air, while the PL intensity of CsPbBr3 reduced to 20% of its initial intensity. Therefore, it is considered that low amounts of Se could improve the stability of CsPbBr3 quantum dots.  相似文献   

12.
Poor stability of CsPbBr3 perovskite nanocrystals (NCs) to moisture/heat/light has significantly limited their application as a green phosphor, despite their outstanding luminescent properties. Here, a remarkably stable CsPbBr3 NCs−silica composite phosphor functionalized with surface phenyl molecules (CsPbBr3−SiO2Ph) is synthesized by controlling low-temperature hydrolysis and condensation reaction of perhydropolysilazane in the presence of CsPbBr3 NCs followed by phenyl-functionalization. Through the process, CsPbBr3 NCs are confined in a compact silica matrix, which is impermeable to H2O. The synthesis strategy is extended to a classical red quantum dot, CdZnSeS@ZnS NCs, to fabricate a white light emitting diode (WLED) consisting of CsPbBr3−SiO2Ph and CdZnSeS@ZnS−SiO2Ph phosphor and silicone resin packaged on a commercial blue InGaN chip with luminous efficacy (LE) of 9.36 lm W−1. The WLED undergoes enhancements in both green and red photoluminescence over time to achieve a highly efficient performance of 38.80 lm W−1. More importantly, the WLED exhibits unprecedented operational stability of LE/LE0 = 94% after 101 h-operation at 20 mA (2.56 V). The ultra-high operational stability and efficient performance are mainly attributed to thermal curing and aging through which grain growth occurs as well as deactivation of defect states by permeated atmospheric O2.  相似文献   

13.
Inorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr2, dual‐phase all‐inorganic perovskite composite CsPbBr3–CsPb2Br5 thin films are prepared as light‐harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.375 A W?1 and 1011 Jones, respectively, and a fast response time (from 10% to 90% of the maximum photocurrent) of ≈280 µs/640 µs. The device also shows an excellent stability in air for more than 65 d without encapsulation. Tetragonal CsPb2Br5 provides satisfactory passivation to reduce the recombination of the charge carriers, and with its lower free energy, it enhances the stability of the inorganic perovskite devices. Remarkably, the same inorganic perovskite photodetector is also highly flexible and exhibits an exceptional bending performance (>1000 cycles). These results highlight the great potential of dual‐phase inorganic perovskite films in the development of optoelectronic devices, especially for flexible device applications.  相似文献   

14.
The judicious design of efficient electron mediators to accelerate the interfacial charge transfer in a Z‐scheme system is one of the viable strategies to improve the performance of photocatalysts for artificial photosynthesis. Herein, ultrathin and small‐size graphene oxide (USGO) nanosheets are constructed and employed as the electron mediator to elaborately exploit an efficient CsPbBr3‐based all‐solid‐state Z‐scheme system in combination with α‐Fe2O3 for visible‐light‐driven CO2 reduction with water as the electron source. CsPbBr3 and α‐Fe2O3 can be closely anchored on USGO nanosheets, owing to the existence of interfacial strong chemical bonding behaviors, which can significantly accelerate the photogenerated carrier transfer between CsPbBr3 and α‐Fe2O3. The resultant improved charge separation efficiency endows the Z‐scheme system exhibiting a record‐high electron consumption rate of 147.6 µmol g?1 h?1 for photocatalytic CO2‐to‐CO conversion concomitant with stoichiometric O2 from water oxidation, which is over 19 and 12 times higher than that of pristine CsPbBr3 nanocrystals and the mixture of CsPbBr3 and α‐Fe2O3, respectively. This work provides a novel and effective strategy for improving the catalytic activity of halide‐perovskite‐based photocatalysts, promoting their practical applications in the field of artificial photosynthesis.  相似文献   

15.
Despite great progress in the photovoltaic conversion efficiency (PCE) of inorganic–organic hybrid perovskite solar cells (PSCs), the large‐scale application of PSCs still faces serious challenges due to the poor‐stability and high‐cost of the spiro‐OMeTAD hole transport layer (HTL). It is of great fundamental importance to rationally address the issues of hole extraction and transfer arising from HTL‐free PSCs. Herein, a brand‐new PSC architecture is designed by introducing multigraded‐heterojunction (GHJ) inorganic perovskite CsPbBrx I3?x layers as an efficient HTL. The grade adjustment can be achieved by precisely tuning the halide proportion and distribution in the CsPbBrx I3?x film to reach an optimal energy alignment of the valance and conduction band between MAPbI3 and CsPbBrx I3?x . The CsPbBrx I3?x GHJ as an efficient HTL can induce an electric field where a valance/conduction band edge is leveraged to bend at the heterojunction interface, boosting the interfacial electron–hole splitting and photoelectron extraction. The GHJ architecture enhances the hole extraction and conduction efficiency from the MAPbI3 to the counter electrode, decreases the recombination loss during the hole transfer, and benefits in increasing the open‐circuit voltage. The optimized HTL‐free PCS based on the GHJ architecture demonstrates an outstanding thermal stability and a significantly improved PCE of 11.33%, nearly 40% increase compared with 8.16% for pure HTL‐free devices.  相似文献   

16.
The in‐depth understanding of ions' generation and movement inside all‐inorganic perovskite quantum dots (CsPbBr3 QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br? ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive‐switching effects. Verified by field‐emission scanning electron microscopy as well as energy‐dispersive X‐ray spectroscopy analysis, the resistive switching behavior of CsPbBr3 QD‐based photonic resistive random‐access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr3 QD‐based RRAM with a p‐channel transistor, the novel application of an RRAM–gate field‐effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all‐inorganic perovskite QD‐based photonic resistive memory for successful logic application.  相似文献   

17.
This paper reports highly bright and efficient CsPbBr3 perovskite light‐emitting diodes (PeLEDs) fabricated by simple one‐step spin‐coating of uniform CsPbBr3 polycrystalline layers on a self‐organized buffer hole injection layer and stoichiometry‐controlled CsPbBr3 precursor solutions with an optimized concentration. The PeLEDs have maximum current efficiency of 5.39 cd A?1 and maximum luminance of 13752 cd m?2. This paper also investigates the origin of current hysteresis, which can be ascribed to migration of Br? anions. Temperature dependence of the electroluminescence (EL) spectrum is measured and the origins of decreased spectrum area, spectral blue‐shift, and linewidth broadening are analyzed systematically with the activation energies, and are related with Br? anion migration, thermal dissociation of excitons, thermal expansion, and electron–phonon interaction. This work provides simple ways to improve the efficiency and brightness of all‐inorganic polycrystalline PeLEDs and improves understanding of temperature‐dependent ion migration and EL properties in inorganic PeLEDs.  相似文献   

18.
Due to their extraordinary properties, boron nitride nanosheets (BNNSs) have great promise for many applications. However, the difficulty of their efficient preparation and their poor dispersibility in liquids are the current factors that limit this. A simple yet efficient sugar‐assisted mechanochemical exfoliation (SAMCE) method is developed here to simultaneously achieve their exfoliation and functionalization. This method has a high actual exfoliation yield of 87.3%, and the resultant BNNSs are covalently grafted with sugar (sucrose) molecules, and are well dispersed in both water and organic liquids. A new mechanical force–induced exfoliation and chemical grafting mechanism is proposed based on experimental and density functional theory investigations. Thanks to the good dispersibility of the nanosheets, flexible and transparent BNNS/poly(vinyl alcohol) (PVA) composite films with multifunctionality is fabricated. Compared to pure PVA films, the composite films have a remarkably improved tensile strength and thermal dissipation capability. Noteworthy, they are flame retardant and can effectively block light from the deep blue to the UV region. This SAMCE production method has proven to be highly efficient, green, low cost, and scalable, and is extended to the exfoliation and functionalization of other two‐dimensional (2D) materials including MoS2, WS2, and graphite.  相似文献   

19.
Lithium niobate films grown epitaxially on sapphire substrate were prepared using a thermal chemical vapor deposition method from the metalorganic compounds Li(C11H19O2) and Nb(OC2H5)5. The range of operating conditions for obtaining pure epitaxially grown LiNbO3 without other oxides is within that for obtaining pure polycrystalline LiNbO3 grown on silicon substrate. On analyzing the composition of the epitaxially grown LiNbO3 film, the composition of the film was similar to that of the LiNbO3 solid solution in the phase diagram of the Li-Nb composite oxide obtained for crystal growth from a molten solution.  相似文献   

20.
Low trap‐state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap‐state density. Time‐dependent photoluminescence study with one‐photon excitation (OPE) and two‐photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm2 V?1 S?1. Furthermore, CsPbBr3 MC‐based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R ) up to 6 × 104 A W?1 with OPE and high R up to 6 A W?1 with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all‐inorganic perovskite‐based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈105 and a gain‐ bandwidth product of 108 Hz for OPE (a gain ≈103 and a gain‐bandwidth product of 106 Hz for TPE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号