首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

2.
1. During recent decades, Gonyostomum semen populations have spread in northern temperate regions forming dense blooms that may dominate the phytoplankton assemblage for extended periods. In this study, we investigate the effects of G. semen blooms in boreal brown water lakes with special emphasis on phytoplankton, fish and benthic invertebrate assemblages using data from 10 boreal lakes sampled annually over a 10‐year period. 2. Significant differences in phytoplankton and benthic invertebrate assemblages were found between lakes with high (3.01 mm3 L?1; >80% phytoplankton biomass) and lakes with low G. semen biomass (0.03 mm3 L?1; <5% phytoplankton biomass). In particular, high G. semen lakes had lower biomass of smaller, edible phytoplankton and a higher abundance and biomass of benthic invertebrates, especially Chaoborus flavicans, and perch than low G. semen lakes. 3. The length distribution of fish also suggested a tendency towards large and older fish and a lower recruitment success in high G. semen lakes, as denoted by lower abundances of fish shorter than 10 cm and higher biomass and abundance of fish longer than 15 cm in high G. semen lakes. 4. This study shows that high G. semen lakes are characterised by less edible phytoplankton, dominance by a few species and enhanced benthic secondary and fish production. Hence, the conjecture that high biomasses of G. semen create a bottleneck in the energy transfer to higher trophic levels seems less likely in boreal lakes.  相似文献   

3.
Rapid population growth in the dry climate regions, arable land scarcity, and irrigation expansion limitations direct our interest to possibilities of yield increase in rainfed agriculture. Literature, however, indicates large differences between actual and potential yields, and between yields on farmers’ fields and research stations. This article focuses on the determinants of these yield gaps and the windows of opportunity for yield increase on the farmer's field together with the agricultural challenges involved. The study links the conventional approach to estimate crop water requirements and dry spell effects on biomass production to a conceptual Green Water Crop Model. This model addresses the effects on crop yields of the sequential diversions of infiltrating rainfall (rainwater partitioning into runoff, plant available soil water, and deep percolation) and of different relations between nonproductive evaporation flow and productive transpiration flow, defined together as green water flow. Also, the effects of droughts and dry spells are analyzed. The model is used to demonstrate typical situations for semiarid and dry subhumid conditions (lengths of growing period (LGP) of 90 and 179 days, respectively) for maize (Zea mays (L.)) under on-station agricultural conditions. Based on detailed water flow analysis in a 3-year on-farm case study in the Sahel on pearl millet (Pennisetum glaucum (L.) Br.), the model is used to clarify the large scope for improved yield levels, achievable through land and water management securing that runoff losses and deep percolation are reduced and nonproductive evaporation losses minimized. The analysis indicates that poor rainwater partitioning and low plant water uptake capacity alone reduces estimated on-farm grain yields to 1/10th of the potential yields. This suggests that lack of water per se not necessarily is the primary constraint to crop growth even in drought prone areas of sub-Saharan Africa. The conclusion is that even a doubling of crop yields would be agro-hydrologically possible with relatively small manipulations of rainwater partitioning in the water balance.  相似文献   

4.
  • 1 Planktivorous fish were hypothesised to influence the abundance of algal biomass in lakes by changing zooplankton grazing, affecting zooplankton nutrient recycling and by direct recycling of nutrients to phytoplankton. The relative roles of direct fish effects vs. zooplankton grazing were tested in mesocosm experiments by adding to natural communities large grazing zooplankton (Daphnia carinata) and small planktivorous fish (mosquitofish or juveniles of Australian golden perch).
  • 2 The addition of Daphnia to natural communities reduced the numbers of all phytoplankton less than 30 µm in size, but did not affect total biomass of phytoplankton as large Volvox colonies predominated.
  • 3 The addition of Daphnia also reduced the abundance of some small (Moina, Bosmina, Keratella) and large (adult Boeckella) zooplankton, suggesting competitive interactions within zooplankton.
  • 4 The addition of mosquitofish to communities containing Daphnia further reduced the abundance of some small zooplankton (Moina, Keratella), but increased the numbers of Daphnia and adult Boeckella. In spite of the likely increase in grazing due to Daphnia, the abundance of total phytoplankton and dominant alga Volvox did not decline in the presence of mosquitofish but was maintained at a significantly higher level than in control.
  • 5 The addition of juveniles of golden perch to communities containing Daphnia reduced the abundance of small zooplankton (Moina), increased the abundance of large zooplankton (adult Boeckella) but had no significant effect on Daphnia and total phytoplankton abundance.
  • 6 The results of the present study suggest that some planktivorous fish can promote the growth of phytoplankton in a direct way, probably by recycling nutrients, and even in the presence of large grazers. However, the manifestation of the direct effect of fish can vary with fish species.
  相似文献   

5.
《Ecological Engineering》2005,24(3):233-239
The introduction of Asian-based Sawah1 farming system through an ecotechnology approach has opened a new frontier for diversification of the rice-based cropping system in West Africa. On-farm rice–fish culture experiments were conducted at Biemso under irrigated Sawah and Nobewam irrigation project sites in Ashanti region, Ghana, during the main cropping season of 2000. The objectives of the study were to evaluate the effect of fish on performance of rice and to assess relative economics of concurrent rice–fish culture and rice monoculture under lowland. The results indicated that the presence of fish did not significantly depress the yield of rice. The size of the fish increased from an initial weight of 25–80 g at Nobewam and to 90 g at Biemso site during the culture period of 100 and 120 days, respectively. The net return from the rice–fish culture ranged from US$ 1106.90 to 1233.80 whilst that of rice monoculture ranged from US$ 1046.40 to 11108.60. Percentage increase in revenue from the rice–fish system over the rice monoculture ranged between 5 and 11%. These results suggest that rice–fish integration could be a viable option for diversification for smallholder rice farmers in lowlands with soil and water conservation structures and reliable source of water for irrigation.  相似文献   

6.
Classical models of phytoplankton–zooplankton interaction show that with nutrient enrichment such systems may abruptly shift from limit cycles to stable phytoplankton domination due to zooplankton predation by planktivorous fish. Such models assume that planktivorous fish eat only zooplankton, but there are various species of filter-feeding fish that may also feed on phytoplankton. Here, we extend these classical models to systematically explore the effects of omnivory by planktivorous fish. Our analysis indicates that if fish forage on phytoplankton in addition to zooplankton, the alternative attractors predicted by the classical models disappear for all realistic parameter settings, even if omnivorous fish have a strong preference for zooplankton. Our model also shows that the level of fish biomass above which zooplankton collapse should be higher when fish are omnivorous than when fish are zooplanktivorous. We also used the model to explore the potential effects of the now increasingly common practice of stocking lakes with filter-feeding fish to control cyanobacteria. Because omnivorous filter-feeding fish forage on phytoplankton as well as on the main grazers of phytoplankton, the net effect of such fish on the phytoplankton biomass is not obvious. Our model suggests that there may be a unimodal relationship between the biomass of omnivorous filter-feeding fish and the biomass of phytoplankton. This implies that to manage for reductions in phytoplankton biomass, heavy stocking or strong reduction of such fish is best.  相似文献   

7.
Primary productivity, community respiration, chlorophyll a concentration, phytoplankton species composition, and environmental factors were compared in the Yolo Bypass floodplain and adjacent Sacramento River in order to determine if passage of Sacramento River through floodplain habitat enhanced the quantity and quality of phytoplankton carbon available to the aquatic food web and how primary productivity and phytoplankton species composition in these habitats were affected by environmental conditions during the flood season. Greater net primary productivity of Sacramento River water in the floodplain than the main river channel was associated with more frequent autotrophy and a higher P:R ratio, chlorophyll a concentration, and phytoplankton growth efficiency (αB). Total irradiance and water temperature in the euphotic zone were positively correlated with net primary productivity in winter and early spring but negatively correlated with net primary productivity in the late spring and early summer in the floodplain. In contrast, net primary productivity was correlated with chlorophyll a concentration and streamflow in the Sacramento River. The flood pulse cycle was important for floodplain production because it facilitated the accumulation of chlorophyll a and wide diameter diatom and green algal cells during the drain phase. High chlorophyll a concentration and diatom and green algal biomass enabled the floodplain to export 14–37% of the combined floodplain plus river load of total, diatom and green algal biomass and wide diameter cells to the estuary downstream, even though it had only 3% of the river streamflow. The study suggested the quantity and quality of riverine phytoplankton biomass available to the aquatic food web could be enhanced by passing river water through a floodplain during the flood season.  相似文献   

8.
Demeke Admassu 《Hydrobiologia》1996,337(1-3):77-83
The breeding season of Oreochromis niloticus in Lake Awassa was studied from fish caught monthly from December 1987 to November 1988 in relation to a number of environmental factors. Fish at various stages of gonad development and spawning were caught in almost all months, but breeding fish were more frequent twice a year: main peak occurred during January–March and a secondary one occurred during July–September. Gonadosomatic index (GSI) values peaked twice in the study year, a major peak being during January–March and a less pronounced one during July–September. Thus, it was concluded that O. niloticus in Lake Awassa breeds intensively in the former and less intensively during the latter period, and that some breeding occurs at any time of the year. Intensive breeding activity during January–March appeared associated with increase in solar radiation and sunshine hours d–1 whereas that during July–September appeared associated with heavy rainfall. However, intensive breeding in both periods coincided with increase in phytoplankton biomass. Previously, phytoplankton biomass in this lake is shown to increase following increase in nutrients due to mixing- and rainfall-associated changes in the hydrography and hydrology of the lake. Thus, although further studies are required, increase in phytoplankton may be one of the environmental cues to stimulate spawning in O. niloticus in Lake Awassa whereas other factors such as sunshine and rainfall may have indirect roles through their effects on the hydrology and hydrography of the lake ultimately resulting in changes in phytoplankton biomass.  相似文献   

9.
The distribution and abundance of the five species of Schilbeidae in Lake Kainji were studied. The gill net samples showed that Eutropius niloticus was the most abundant and very common species in the lake. Physailia pellucida although greatly under-estimated by the gill nets was the next abundant and fairly common species. Schilbe mystus was not as abundant as the two previous species but was found to be common. Schilbe uranoscopus and Siluranodon auritus were very rare in the Lake. The spatial distribution showed that E. niloticus and P. pellucida occurred in high numbers in the open lake and the shorelines, while S. mystus had its highest number in the riverine areas of the Lake. An upward trend in the abundance of E. niloticus and P. pellucida was indicated while a decrease in the abundance of S. mystus within the lake was noted.  相似文献   

10.
An in situ mesocosm experiment was performed at Old Woman CreekEstuary, OH, to assess the importance of fish-induced sedimentresuspension in regulating phytoplankton biomass and communitystructure Six polyethylene tubes (1 m diameter x 2 m long) wereplaced into the lake, enclosing portions of the water columnand sediments Three duplicated treatments were established:(i) control, no fish, (ii) fish, stocked with small fish fromthe lake; and (iii) fish/net, stocked with fish, but into tubeswith coarse nets suspended above the sediments to prevent resuspension.Total P concentrations and algal biomass in the fish tubes becamemarkedly higher than the fish/net and control tubes. Centricdiatoms and small cryptomonads were the initial dominants. Inthe lake and fish tubes, this community was replaced by nanochlorophytes.In the fish/ net and control tubes, a very different successionoccurred, where large cryptomonads became dominant These resultsindicate that sediment nutrient resuspensions by fish activitiescan maintain a phytoplankton community in an immature state,with small r-selected dominants. When sediment nutrient resuspensionwas prevented (in the fish/net and control tubes), larger algalspecies increased in relative biovolume, regardless of whetherfish were present.  相似文献   

11.
In this study we analysed the effects of Galaxias maculatus, a landlocked small fish species, on nutrient dynamics, and the consequent effects on phytoplankton biomass of an oligotrophic North Patagonian lake. We performed field and laboratory experiments in order to explore nutrient release by G. maculatus with increasing fish biomass and body size, and the resulting phytoplankton responses. Our results showed that phytoplankton biomass was strongly enhanced in the presence of fish, and that enhancement was greater with increasing fish biomass. These algal increments were associated with higher nutrient concentrations, due to the excretion/egestion processes of fish. In our two laboratory experiments we did not observe phytoplankton increase, probably due to light conditions, but we did observe significant effects of fish on nutrient concentrations. As was expected, mass-specific nutrient release rates were higher in smaller fish than in larger ones. So, the amount of nutrients supplied to phytoplankton would be influenced by the size structure of fish population. As a consequence of different N and P release rates, an increase in the :PTDP ratio was observed in the presence of fish. The fact that G. maculatus is a species that moves in schools would determine spatial heterogeneity in nutrient release, with important effects of reducing nutrient limitation and shifting :PTDP ratios.  相似文献   

12.
In laboratory experiments we tested the hypothesis that nutrients supplied by fish and zooplankton affect the structure and dynamics of phytoplankton communities. As expected from their body size differences, fish released nutrients at lower mass-specific rates than Daphnia. On average, these consumers released nutrients at similar N:P ratios, although the ratios released by Daphnia were more variable than those released by fish. Nutrient supply by both fish and Daphnia reduced species richness and diversity of phytoplankton communities and increased algal biomass and dominance. However, nutrient recycling by fish supported a more diverse phytoplankton community than nutrient recycling by Daphnia. We conclude that nutrient recycling by zooplankton and fish have different effects on phytoplankton community structure due to differences in the quality of nutrients released. Received: 21 December 1998 / Accepted: 31 May 1999  相似文献   

13.
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N‐ or P‐limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large‐scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl‐a)] were carried out in 45 mid‐lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl‐a. In separate nutrient–chl‐a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl‐a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl‐a : TP was not influenced by TN : TP, while chl‐a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a ‘cut‐off’ TN : TP ratio to identify a limiting nutrient for a multi‐species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) >100 kg ha?1 had significantly higher chl‐a and lower Secchi depth than those with yields <100 kg ha?1. TP–chl‐a and TP–Secchi depth relationships are not significantly different between lakes with yields >100 kg ha?1 or <100 kg ha?1. These results indicate that the fish failed to decrease chl‐a yield or enhance ZSD. Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.  相似文献   

14.
This study investigated the selenium (SE) requirements of three phytoplankton species which commonly bloom in southern Australian estuaries. The present study showed that the toxic dinoflagellate Gymnodinium catenatum Graham had an obligate requirement for Se (IV) in culture. After two transfers (4 weeks = 7 generations) in Se-deficient seawater medium, this phytoplankton species exhibited a decline in growth rate (25%) and biomass yield (90%), while complete cessation of cell division occurred under prolonged (8 weeks = 12 generations) Se starvation. Addition of 10-9-10-7 M H2SeO3 to nutrient-enriched seawater medium resulted in increased G.catenatum growth and biomass yields in direct proportion to the Se concentrations offered. In contrast to G.catenatum, Se limitation was observed in the dinoflagellate Alexandrium minutum Halim after four transfers (5 weeks = 20 generations) in Se-deficient medium. Exponential growth rates of A.minutum decreased slightly (5-10%) when Se was not supplied, but biomass yields decreased as much as 80-90%. The diatom Chaetoceros cf. <It>tenuissimus Meunier showed no evidence of Se limitation even after eight transfers (8 weeks; >60 generations) in Se-deficient medium. Variations in growth rates and biomass yields between transfers provide valuable information about the relative potential for Se limitation in the three species studied. In addition, differences in Se requirement between these bloom-forming phytoplankton species suggest that this micronutrient may play a role in structuring phytoplankton communities in southern Australian waters.   相似文献   

15.
A 2 × 2 factorial experiment was conducted between April and August 2001 to evaluate the effects of NaCl on Oreochromis niloticus growth and water quality in twelve 0.015 ha limed ponds. The design involved fertilizer and salt as factors with two treatments for each factor. Each salt‐fertilizer combination was replicated three times and fish were not offered external food during the 98 days culture. Growth of O. niloticus was significantly enhanced by salt at higher fertilizer level but not at the lower fertilization level. Although salt had no direct effect on fish growth, a significant salt‐fertilizer interaction was demonstrated. Water quality variables, with a few exceptions, were similar among the salted treatments. Total ammonia increased significantly with fertilization level, but the values were similar in salted and unsalted treatments at the same fertilizer level. Total nitrogen was higher in the salted than unsalted treatments while the organic matter content was lower in the salted treatments. The reasons for the better growth of O. niloticus, are discussed with respect to water quality variables. The present results suggest that fertilization rates of 20 kg N ha?1 may have negative effects on fish growth. However, presence of sodium chloride seems to reduce these negative effects.  相似文献   

16.
1. The indirect effects of predators on lower trophic levels have been studied without much attention to phenotypically plastic traits of key food web components. Phenotypic plasticity among species creates phenotypic diversity over a changing environmental landscape. 2. We measured the indirect effects of planktivorous larval walleye (Stizostedion vitreum) on phytoplankton biomass through their effects on the dominant herbivore species, Daphnia pulicaria and D. mendotae. 3. Fish had no effect on phytoplankton biomass or overall Daphnia density. We observed a compensatory response to predation by functionally comparable species within a trophic level in the form of shifting dominance and coexistence of Daphnia species. We hypothesized that this phenotypically plastic response to predation decoupled a potential trophic cascade in this freshwater pelagic system. Daphnia pulicaria density decreased over time with fish predation, but D. mendotae density increased over time with fish predation. 4. Phenotypically plastic life history trait shifts and reproductive rates differed between species in fishless and fish enclosures, accounting for population trends. Daphnia pulicaria were also proportionally higher in walleye larvae stomachs than in the enclosures, indicating that walleye preferred to feed on D. pulcaria over D. mendotae. The resultant shift in dominance may partially explain the overall benign effect of fish on grazers and supports the hypothesis that trophic level diversity can decouple a trophic cascade.  相似文献   

17.
The growth and photosynthetic activities of Cyanobacteria passed through the gut of silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), and tilapia (Oreochromis niloticus) were compared with those of phytoplankton taken directly from Lake Taihu during a 13-day in situ dialysis culture. After the first 3–5 days of reduced activity after excretion by silver carp and bighead carp, the photosynthetic activity of Cyanobacteria recovered and rose significantly higher (P < 0.01) than levels in the control population, whereas there was a notable reduction of photosynthetic activity after passage through tilapia gut. The phytoplankton biomass showed a 2- to 3-fold increase of growth, and extracellular polysaccharide production was also stimulated after passage through silver carp and bighead carp gut. Chlorophyta fluorescence was detected at much higher levels than that of Cyanobacteria and Bacillariophyta after passage through tilapia gut. Scenedesmus obliqnus and Chlamydomonas sp. contributed much to the growth of the Chlorophyta during the in situ cultivation. However, the total phytoplankton biomass showed a distinct reduction in the tilapia treatment during the culture. The study indicated that Nile tilapia feeding and defecation may help remove Cyanobacteria from the water column and favor a community shift to Chlorophyta.  相似文献   

18.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

19.
To clarify spatial and seasonal differences in net plankton and zoobenthos in Lake Tonle Sap, Cambodia, quantitative surveys were carried out at 14 stations in the north and south basins in high- and low-water seasons during 2003–2005. In the phytoplankton communities, a diatom Aulacoseira granulata dominated throughout the lake in the high-water seasons, while blue-green algae, mostly composed of Microcystis, surpassed other algae in the low-water season when the lake water was very turbid and the Secchi disk readings were only a few centimeters. In the low-water seasons, a bloom of floating blue-green algae occurred everywhere, especially prominent in the coastal areas. Protozoans and rotifers dominated the zooplankton communities. In the open-water stations, diversity was higher in high-water seasons in phytoplankton, while it was not significantly different between seasons in zooplankton. Composition of plankton communities in Lake Tonle Sap appears to have changed little since the 1950s, at least in phytoplankton, while the phytoplankton density appears to be higher in the present study. Among the macrozoobenthos, mollusks, oligochaetes and chironomids dominated in density, and mollusks exceeded others in biomass in both basins and seasons. The total densities of macrozobenthos were not high, being fewer than 1,300 m−2 throughout the stations and seasons. Possible reasons for the low zoobenthos abundance in the lake may include high predation pressures by benthivorous fish or unfavorable unstable and flocculant substrates.  相似文献   

20.
  • 1 The vertical and horizontal distribution of phytoplankton, zooplankton and fish in Loch Ness, Scotland, were monitored during one day‐time and one night‐time survey in July 1992. The vertical samples were collected at a site located at the northern end of the loch and the horizontal samples along a longitudinal transect.
  • 2 The vertical distribution surveys demonstrated that the phytoplankton, the zooplankton and the fish were concentrated in the top 30 m of water above the seasonal thermocline. Within this layer, Cyclops stayed much closer to the surface than Eudiaptomus but both species moved towards the surface at night.
  • 3 The most important factor influencing the horizontal distribution of the phytoplankton was the north‐ south gradient in productivity. The sub‐catchments surrounding the north basin contain a greater proportion of arable land than those to the south and the concentrations of nitrate‐nitrogen and phytoplankton chlorophyll increased systematically from south to north.
  • 4 Zooplankton distribution patterns were influenced by wind‐induced water movements and the dispersion of allochthonous material from the main inflows. The highest concentrations of Cyclops were recorded in the north, where there was more phytoplankton, and the highest concentrations of Eudiaptomus in the south, where there were higher concentrations of non‐algal particulates.
  • 5 There was no spatial correlation between total zooplankton and total fish abundance but the highest concentrations of small (1–5 cm) fish were recorded in the south where there was a large patch of Eudiaptomus. The number of Eudiaptomus at specific locations within this patch were, however, negatively correlated with the numbers of small fish. These results suggest that the fish were actively foraging within the patch and were depleting their zooplankton prey in the areas where they were most abundant.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号