首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力-应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

2.
节理岩体的力学特性直接影响工程岩体的安全。为了研究节理岩体的各向异性力学特性和破坏特征,设计进行了0°,30°,45°,60°,75°和90°等6种角度断续节理砂岩的三轴压缩试验,详细分析了节理倾角对断续节理岩体变形强度特征和破坏模式的影响。研究结果表明:①在加载过程中,随着围压增大,断续节理砂岩应力–应变曲线的屈服阶段逐渐明显,峰值强度和残余强度逐渐提高,破坏时延性特征逐渐明显;②随着节理倾角增大,断续节理砂岩的变形模量、抗压强度、黏聚力和内摩擦角等力学参数均呈现先减小后增大的U型变化趋势;③节理对岩样破坏裂纹的形成与开展具有明显的诱导和控制作用,不同倾角岩样的破裂面均顺节理倾角方向发展,当节理倾角与岩样计算破坏角接近的时候,岩样的破裂面顺节理面开展,变形和强度参数达到极小值;④随着围压增大,不同倾角断续节理岩样的变形和强度参数差别逐渐减小,各向异性特征逐渐减弱;⑤断续节理砂岩的破坏模式可分为张拉破坏、折线型的复合剪张破坏、沿节理面剪切破坏等3种类型,节理倾角的分布决定了断续节理砂岩在加载作用下的变形破坏模式,变形破坏模式的差异决定了断续节理砂岩变形和强度参数的各向异性特征。研究成果可为工程中节理岩体的各向异性特征分析提供较好的参考。  相似文献   

3.
砂岩三轴卸荷力学特性试验研究   总被引:7,自引:2,他引:5  
基于三轴卸荷破坏试验,分析研究砂岩在卸荷应力状态下的应力-应变及破坏特征。试验结果表明:岩体卸荷破坏时脆性特征非常明显,相比于加载破坏,卸荷破坏更加突然和剧烈,岩体破碎程度更高;卸荷过程中轴向变形随围压降低不断增加,在开始卸荷阶段增加较慢,当卸荷量达到一定值后,变形突然增大,很小的卸荷量就会引起较大的变形。根据卸荷过程中岩体应力-应变曲线变化特征,将卸荷量作为重要参量,假定岩体在卸荷损伤屈服阶段符合Griffith屈服准则,接近极限破坏强度时符合Hoek-Brown屈服准则,认为卸荷造成岩体屈服发生塑性变形后,岩体卸荷条件下的屈服函数随卸荷量在Griffith准则和Hoek-Brown准则间呈线性变化,推导考虑卸荷应力状态的弹脆塑性力学模型。  相似文献   

4.
对含有预制双裂纹的冻结裂隙砂岩试样单轴压缩细观损伤破坏机理进行了CT动态试验,得到了裂纹萌生、发展、宏观裂纹形成和破坏等不同阶段的岩石损伤CT图像和CT数。研究结果表明,与无预制裂隙的冻结岩石试样相比,已有预制裂纹对冻结裂隙岩石中新裂纹的起裂侮置及贯通性宏观破坏裂纹的形成具有重要影响。预制裂纹的存在导致冻结裂隙砂岩试样的扩容量大于完整冻结试样破坏时的扩容量。  相似文献   

5.
高温后粗砂岩常规三轴压缩条件下力学特性 试验研究   总被引:8,自引:5,他引:8  
 通过在MTS815.03电液伺服岩石力学试验机上对焦作方庄煤矿煤层顶板粗砂岩进行高温后常规三轴压缩试验,基于试验结果研究不同温度作用后常规三向压缩条件下粗砂岩宏观力学特性,分析粗砂岩强度、平均模量、黏聚力、内摩擦角和极限应变与温度的关系;同时对粗砂岩强度、平均模量与围压关系进行探讨。研究结果表明,围压一定,温度为25 ℃~300 ℃时,随着温度的升高,试样的强度、平均模量、黏聚力、内摩擦角均逐渐增大,而变形模量有所降低。高温产生的热应力起到容纳变形和裂隙闭合作用,砂岩试件部分原生裂隙逐渐愈合,裂隙数量减少,密实程度提高,矿物颗粒间接触关系得到改善,摩擦特性得以增强;超过300 ℃ 以后,随着温度的升高,粗砂岩试样的强度、平均模量、黏聚力、内摩擦角均有所减小,而峰值变形逐渐增大,由高温引起的粗砂岩矿物颗粒的不同热膨胀率导致跨颗粒边界的热膨胀不协调,从而产生结构热应力使试样内部产生微裂隙,试样承载能力和抗变形能力减弱。而围压对粗砂岩的力学性质起到改善和强化作用,当温度一定时,随着围压的升高,粗砂岩试件强度、平均模量、黏聚力、内摩擦角均逐渐增大。  相似文献   

6.
为研究不同温度梯度下冻结砂岩的动态力学特性,文中设置6个温度梯度冻结条件:25、-5、-10、-15、-20、-25℃,随后开展SHPB系列试验。试验结果表明,冻结后岩样内部的大直径孔隙随温度的降低而减小,中、小直径孔隙随温度的降低而增大;冻结砂岩的弹性模量随温度的降低总体呈增大趋势,峰值应力随温度的降低而增加,呈现明显的低温强化效应;峰值应变随温度的降低而减小,呈现出低温弱化效应。  相似文献   

7.
含双圆形孔洞砂岩单轴压缩力学特性试验研究   总被引:4,自引:0,他引:4  
孔洞作为岩石内部微缺陷的基本形式之一,其破裂演化机制是岩石力学领域研究的重要课题。对预制双圆形孔洞的板状砂岩试样进行室内单轴压缩试验,研究孔心距2b和倾角?对砂岩强度、变形特征及破裂演化过程等的影响规律。试验结果表明:随孔心距2b的增大,试样的峰值强度和弹性模量均表现为先增大后又减小的特征,孔心距2b分别为22 mm和27 mm时峰值强度和弹性模量达到最大值;随倾角?的增大,峰值强度和弹性模量整体表现为先减小后增大的趋势,倾角?等于60°时峰值强度和弹性模量达到最小值。双圆形孔洞的初始破坏均表现为孔洞内壁塌落破坏,而孔心距2b和倾角?对起裂应力水平、孔洞搭接方式及破裂演化过程均具有重要的影响。  相似文献   

8.
利用英国GDS高精度真三轴仪,针对饱和丰浦砂进行了不同密实度下不同中主应力系数b的排水试验。研究结果表明:各个相对密实度下,丰浦砂破坏时强度应力比、破坏时大主应变随b值的变化的趋势一致,并且,相同b值下对应的破坏点强度随相对密实度的增加而逐渐增加,相同b值下对应的破坏时大主应变随相对密实度的增加而逐渐降低;不同相对密实度下,当b0.25时,内摩擦角值随b值增加而增加,当0.25≤b0.5时,除松散状态下砂土(Dr=30%)外,内摩擦角值基本保持不变,当0.5≤b0.75时,内摩擦角值随b值增大又逐渐增大;之后,内摩擦角逐渐下降。  相似文献   

9.
对饱水和干燥状态下的混凝土进行三轴和单轴压缩试验,对比干燥状态下的试验结果表明:饱水混凝土具有明显的围压效应,抗压强度随着围压的增大显著提高;Bresler-Pister准则能更准确地描述混凝土强度的非线性特征,随围压的增大,饱水和干燥混凝土的强度变化的趋势出现明显的差别;相同围压下,饱水混凝土的抗压强度低,割线模量小,峰值应变大,变形能力增强;饱水混凝土因水的影响表现出良好的延性。  相似文献   

10.
高应力下原煤三轴压缩力学特性研究   总被引:5,自引:0,他引:5  
 基于取自淮南矿区-780 m标高B10煤层的原煤的试件,通过MTS815.04电液伺服试验系统进行高应力下原煤的常规三轴压缩试验,研究煤岩的变形、强度、参数及破坏特征。研究结果表明:(1) 煤岩偏应力–轴向应变曲线主要由弹性、屈服、峰后脆性破坏阶段或应变软化段构成。其中,弹性段明显较长,且围压越大,曲线越陡,弹性模量越大;屈服段则总体较短。(2) 煤岩在单轴或低围压条件下,峰后脆性破坏特征明显;随着围压升高,峰后开始呈现延性特征,且围压越高,延性特征越明显。当围压达到50 MPa时,峰后轴向应变几乎呈现塑性流动状态。(3) 随着围压的增加,峰值轴向应变呈抛物线趋势增加,峰值侧向应变则呈线性增加趋势。(4) 煤岩偏应力–体积应变曲线,在低围压条件下表现出扩容机制,且围压越低扩容特征越明显;在高围压下,从峰前越至峰后,则始终向右延展,呈现出不断收缩的状态;而峰值体应变随围压的增加呈抛物线形式增加,收缩特征明显。(5) 煤岩强度随围压增加呈线性趋势增加,且强度参数c,φ值分别为12.72 MPa,24.12°。(6) 煤样的破坏模式主要以剪切破坏为主,破断角大小为23°~35°,且随着围压的增加,以抛物线趋势增加。采用Mohr强度理论可以较好地解释这一变化。  相似文献   

11.
通过对-6℃的冻结黄土及冻结改良黄土在1~15 MPa的围压范围内进行一系列的三轴试验,分析其变形和三轴强度特性。研究发现:随着围压的增大,冻土的应力-应变曲线相继体现出应变软化和应变硬化特征,初始切线模量随围压的增大呈现出先增大后减小的趋势;冻结黄土和冻结改良黄土的三轴强度随围压的增大表现出先增大后减小的趋势,改良后冻结黄土的强度得到明显的提高,且水泥比石灰的改良效果更为显著。基于莫尔-库仑强度准则,得到冻结黄土和冻结改良黄土的广义黏聚力和广义内摩擦角随围压的变化规律。同时,建立非线性莫尔-库仑强度准则,用以描述冻结黄土及冻结改良黄土的强度随围压非线性变化的现象。  相似文献   

12.
高温作用会引起岩石热损伤。对经历20℃(常温),200℃,400℃和600℃温度处理后的粗粒大理岩试样开展40 MPa围压范围内的常规三轴压缩试验,研究热损伤对孔隙率、纵波波速、裂纹发育的影响,分析高温处理和围压共同作用下大理岩的强度与变形特征,并采用GSI弱化方法,基于Hoek-Brown模型提出一种可以描述热损伤岩石强度规律的GSI弱化模型。结果表明:随热处理温度升高,热损伤微裂纹逐渐增多,孔隙率增大,纵波波速迅速下降,岩石的延性得到显著增强;热损伤作用会显著降低岩石的强度,而随着围压逐渐增大,不同温度处理后的岩石强度逐渐趋于一致,表明在高围压条件下围压是影响岩石强度的主要因素;通过试验数据和3组热损伤大理岩试验数据验证可以发现,提出的GSI弱化模型可以较好地反映热损伤岩石的强度随围压的变化规律,GSI指标的变化可以表征热损伤程度的大小。  相似文献   

13.
为深入认识深部含缺陷型岩石的力学行为与破坏特征,利用砂岩材料加工为不同孔径、不同孔数的立方体试样(50 mm×50 mm×100 mm),并利用GCTS RTX-3000岩石三轴仪对含孔洞型缺陷砂岩试件开展了真三轴试验,侧向应力加载到一定值后保持不变,最大主应力继续加载直至试件破坏,探究Mogi-Coulomb强度准则...  相似文献   

14.
<正> 核爆炸、高能炸药爆炸时,爆心附近的压力可达数千吉帕(GPa),温度可达摄氏数千度,使邻近岩石汽化或液化,形成弹坑和洞穴。离爆心稍远的地方,岩石仍处于大变形的塑性状态,使岩体结构和地下构筑的各种设施受到不同程度的破坏。当对爆炸引起的地冲击效应进行数值计算或预言时,都需要确切地了解地壳岩石从高压到低压的力学特性。通常,将反映岩石在高温、高压下气体和流体状态的各力学参数之间的关系式称为状态方程,而将在弹塑性波作用下的固态力学性质称为本构关系。  相似文献   

15.
以二滩水电站现场取得的正长石岩样加工制备标准试件(尺寸为Φ50×100mm),开展岩样的单轴压缩及不同围压下的常规三轴压缩试验,取得岩石试件各项物理力学参数,进行岩石试件在不同应力路径和不同围压下强度及变形分析,自行绘制岩样在不同力学状态下应力-应变曲线,阐述岩样加载到破坏的全过程。  相似文献   

16.
立井冻结壁施工完成后会经历长时间的解冻过程,在长期荷载作用下会产生蠕变变形,冻结岩石解冻过程中的蠕变行为是控制冻结壁长期稳定的关键问题。以甘肃新庄煤矿回风立井冻结工程为背景,分析白垩系冻结砂岩解冻过程中的蠕变力学特性,同时采用核磁共振技术检测解冻过程中孔隙水含量的变化,分析未冻水与砂岩强度的关系,并基于分数阶理论,建立非线性蠕变本构方程。结果表明:岩石中孔隙水主要包括自由水、毛细水和吸附水3种形式,在常温下主要以自由水形式存在,在低温下主要以吸附水状态存在;冻结砂岩解冻过程中长期强度随温度升高逐渐降低,约为常规三轴压缩强度的45%~51%,且在-4℃时有突变现象;冻结砂岩长期强度与未冻水含量关系密切,呈指数函数关系;冻结砂岩的蠕变破坏主要是应力场、化学势场和渗流场三场耦合的作用,其中应力场起主导作用;根据冻结砂岩解冻过程中的蠕变变形特性,引入分数阶函数,基于分数阶理论建立相应的非线性蠕变方程。研究成果可为评价冻结壁解冻诱发失稳破坏提供理论支撑和技术支持。  相似文献   

17.
通过对经历400℃~1 000℃高温后的粗砂岩进行常规三轴压缩试验,分析试样变形、强度和破坏特征与温度、围压的关系。结果表明:经历400℃高温后的试样围压高于20 MPa时,试样峰值强度附近出现明显屈服平台,经历超过600℃以上高温的试样均具有明显峰值点,随温度升高试样的塑性减弱脆性增强;400℃以内高温对试样的变形参数影响不大,经历超过400℃以上高温的试样的弹性模量、变形模量和极限应变随围压增加单调增加呈正相关性;试样的弹性模量和变形模量随温度升高单调降低,而峰值应变随温度升高单调增加。高温后试样峰值强度随围压增大而单调增加,符合Coulomb强度准则,综合围压影响系数为6.541;800℃以内高温对试样黏聚力、内摩擦角影响不明显,经历1 000℃高温后的试样黏聚力急剧降低,内摩擦角稍有增加;800℃以内高温对粗砂岩具有强化作用,扣除围压影响后试样材料强度与温度呈正相关,超过800℃以上高温使试样强度有所弱化,试样材料强度与温度呈负相关性;高温后试样的试验破坏角和理论破坏角基本一致,高温对试样破坏角影响较小,试验破坏角随围压增加而单调减小,围压对试样破坏角的影响大于温度的影响。  相似文献   

18.
研究三向应力作用下裂隙对岩石力学特性的影响对于确保裂隙岩体工程稳定具有重要的实践意义。通过配制含两条不平行张开贯穿型裂隙类砂岩试样,采用MTS815.02岩石力学伺服试验机进行不同围压下常规三轴压缩试验。基于试验结果,详细分析了完整及断续不平行双裂隙类岩石材料的应力–应变曲线、强度和变形参数以及破裂模式。研究结果表明:1断续裂隙岩样应力–应变曲线呈现多台阶式软化,部分曲线出现双峰值现象;2完整及断续裂隙岩样峰值强度、裂纹损伤阈值和峰值应变均随着围压的增大呈线性增大。完整岩样峰值强度对围压的敏感程度最高,而断续裂隙岩样中由倾角45°,30°和60°依次减小;3断续裂隙岩样宏观破裂模式受裂隙倾角和围压的共同作用。当围压较小时,破裂形态受裂隙倾角的影响较大;当围压增大到一定程度后,裂隙倾角的影响逐渐减弱,围压的作用开始显现,岩样最终呈剪切破坏模式。  相似文献   

19.
 利用改制后的煤岩吸附–渗透–力学耦合试验系统,以淮南矿区-780 m标高B10煤层的原煤样作为研究对象,进行高应力下含瓦斯原煤常规三轴压缩力学特性的研究。结果表明:(1) 含瓦斯原煤偏应力–轴向应变曲线主要有弹性、屈服、破坏或峰后软化段构成。其中,弹性段连续、光滑性较差,多呈现出应变“软化–硬化”的波动起伏特点。(2) 峰后脆性破坏特征明显,且在相同初始瓦斯压力下,随着初始有效围压的升高,脆性向延性转化的趋势较弱;而在相同初始有效围压下,初始瓦斯压力越大,脆性破坏特征则越显著。(3) 偏应力–侧向应变曲线与轴向相比,峰前连续、光滑性更好,且几乎均呈线弹性;而峰后变化则趋同。(4) 偏应力–体应变曲线,在低有效围压下表现出扩容机制,且始于峰前;而在高有效围压下,则从峰前越至峰后,始终向右延展,呈现出体积不断收缩的趋势,且瓦斯压力越大,收缩特性越显著。(5) 在相同有效围压下,随着瓦斯压力的增加,峰前轴向、侧向应变增加的速率,以及峰值强度、泊松比均呈增大趋势;而弹性模量则呈降低趋势。(6) 相同瓦斯压力下,随着有效围压的增加,峰前轴向、侧向应变增加的速率,以及泊松比均呈降低趋势;而峰值强度、弹性模量则呈增大趋势。(7) 随着围压或瓦斯压力分别升高,峰值强度均呈线性增大趋势,煤样破坏模式以剪切破坏为主,且强度参数黏聚力和内摩擦角分别为14.02 MPa,25.93°。  相似文献   

20.
为揭示水和加载率对岩石力学性质的共同作用效应,利用分离式霍普金森压杆试验系统对干燥和饱水砂岩进行一系列动态压缩、劈裂及断裂试验。试验结果表明,在静态加载条件下,岩石饱水后其强度和断裂韧度均会发生不同程度的降低;在动态加载条件下,岩石的强度和断裂韧度随着加载率的增加而升高,且相较于干燥试样,饱和岩石表现出更高的率相关性。在较高加载率下,岩石内部的自由水可产生惯性效应、弯液面效应以及黏性作用,阻碍裂纹的产生和扩张。特别地,当加载率超过1 290 GPa/s后,饱和试样的压缩强度甚至可以超过干燥试样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号