首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies were conducted on the oxidation and assimilation of various three-carbon compounds by a gram-positive rod isolated from soil and designated strain R-22. This organism can utilize propane, propionate, or n-propylamine as sole source of carbon and energy. Respiration rates, enzyme assays, and 14CO2 incorporation experiments suggest that propane is metabolized via methyl ketone formation; propionate and n-propylamine are metabolized via the methylmalonyl-succinate pathway. Isocitrate lyase activity was found in cells grown on acetate and was not present in cells grown on propionate or n-propylamine. 14CO2 was incorporated into pyruvate when propionate and n-propylamine were oxidized in the presence of NaAsO2, but insignificant radioactivity was found in pyruvate produced during the oxidation of propane and acetone. The n-propylamine dissimilatory mechanism was inducible in strain R-22, and amine dehydrogenase activity was detected in cells grown on n-propylamine. Radiorespirometer and 14CO2 incorporation studies with several propane-utilizing organisms indicate that the methylmalonyl-succinate pathway is the predominant one for the metabolism of propionate.  相似文献   

2.
Pathways of Propionate Degradation by Enriched Methanogenic Cultures   总被引:11,自引:10,他引:1       下载免费PDF全文
A mixed methanogenic culture was highly enriched in a growth medium containing propionate as the sole organic carbon and energy source. With this culture, the pathways of propionate degradation were studied by use of 14C-radiotracers. Propionate was first metabolized to acetate, carbon dioxide, and hydrogen by nonmethanogenic organisms. Formate was not excreted. The carbon dioxide originated exclusively from the carboxyl group of propionate, whereas both [2-14C]- and [3-14C]propionate lead to the production of radioactive acetate. The methyl and carboxyl groups of the acetate produced were equally labeled, regardless of whether [2-14C]- or [3-14C]propionate was used. These observations suggest that in the culture, propionate was degraded through a randomizing pathway.  相似文献   

3.
In vivo 13C and 31P nuclear magnetic resonance techniques were used to study propionate metabolism by activated sludge in enhanced biological phosphorus removal systems. The fate of label supplied in [3-13C]propionate was monitored in living cells subjected to anaerobic/aerobic cycles. During the anaerobic phase, propionate was converted to polyhydroxyalkanoates (PHA) with the following monomer composition: hydroxyvalerate, 74.2%; hydroxymethylvalerate, 16.9%; hydroxymethylbutyrate, 8.6%; and hydroxybutyrate, 0.3%. The isotopic enrichment in the different carbon atoms of hydroxyvalerate (HV) produced during the first anaerobic stage was determined: HV5, 59%; HV4, 5.0%; HV3, 1.1%; HV2, 3.5%; and HV1, 2.8%. A large proportion of the supplied label ended up on carbon C-5 of HV, directly derived from the pool of propionyl-coenzyme A (CoA), which is primarily labeled on C-3; useful information on the nature of operating metabolic pathways was provided by the extent of labeling on C-1, C-2, and C-4. The labeling pattern on C-1 and C-2 was explained by the conversion of propionyl-CoA to acetyl-CoA via succinyl-CoA and the left branch of the tricarboxylic acid cycle, which involves scrambling of label between the inner carbons of succinate. This constitutes solid evidence for the operation of succinate dehydrogenase under anaerobic conditions. The labeling in HV4 is explained by backflux from succinate to propionyl-CoA. The involvement of glycogen in the metabolism of propionate was also demonstrated; moreover, it was shown that the acetyl moiety to the synthesis of PHA was derived preferentially from glycogen. According to the proposed metabolic scheme, the decarboxylation of pyruvate is coupled to the production of hydrogen, and the missing reducing equivalents should be derived from a source other than glycogen metabolism.  相似文献   

4.
Oxidation of Arsenite by a Soil Isolate of Alcaligenes   总被引:3,自引:1,他引:2  
A strain of Alcaligenes , isolated from soil and grown in nutrient broth in the presence of arsenite, possessed the ability to oxidize arsenite to arsenate. Washed cell suspensions consumed one-half mol of oxygen/mol of arsenite and produced arsenate. The optimum pH for arsenite oxidation was 7.0. The Km for arsenite was 1.5 × 10-4 M and V max was 6.7 μl of oxygen/min. The arsenite-oxidizing enzyme system was induced by growth in arsenite. Response of the arsenite-oxidizing enzyme system to respiratory inhibitors suggested that electrons resulting from arsenite oxidation by an oxido-reductase with a bound flavin are transferred via cytochrome c and cytochrome oxidase to oxygen. The presence of the cytochromes in crude extract was confirmed by spectral measurements.  相似文献   

5.
Aniline Utilization by a Soil Pseudomonad   总被引:2,自引:1,他引:1  
  相似文献   

6.
目的:用计算机重构乙醇合成途径,为合成生物燃料乙醇提供理论依据。方法:利用KEGG反应、化合物数据提取反应等式,过滤掉42个通用代谢物参与的反应,然后利用剩下的反应构建反应矩阵;利用广度优先搜索算法在反应矩阵中搜索生成乙醇的代谢途径。结果:计算机重构了23 108条乙醇合成途径,以大肠杆菌作为产乙醇基因工程菌为例,通过限制改构菌整合的关键酶数目,分别得到了78条以酒精O-乙酰基转移酶为关键酶的乙醇合成通路和89条以丙酮酸脱羧酶和乙醇脱氢酶为关键酶的乙醇合成通路,并构建了相应的乙醇合成网络图,标注每个反应的酶及编码该酶的基因。结论:通过计算机方法重构了多种乙醇合成途径,可以为利用微生物工业化生产乙醇提供理论依据。  相似文献   

7.
The symbiotic bacterium Buchnera aphidicola lacks key genes in the biosynthesis of five essential amino acids (EAAs), and yet its animal hosts (aphids) depend on the symbiosis for the synthesis of these EAAs (isoleucine, leucine, methionine, phenylalanine, and valine). We tested the hypothesis, derived from genome annotation, that the missing Buchnera reactions are mediated by host enzymes, with the exchange of metabolic intermediates between the partners. The specialized host cells bearing Buchnera were separated into a Buchnera fraction and a Buchnera-free host cell fraction (HF). Addition of HF to isolated Buchnera preparations significantly increased the production of leucine and phenylalanine, and recombinant enzymes mediating the final reactions in branched-chain amino acid and phenylalanine synthesis rescued the production of these EAAs by Buchnera preparations without HF. The likely precursors for the missing proximal reactions in isoleucine and methionine synthesis were identified, and they differed from predictions based on genome annotations: synthesis of 2-oxobutanoate, the aphid-derived precursor of isoleucine synthesis, was stimulated by homoserine and not threonine via threonine dehydratase, and production of the homocysteine precursor of methionine was driven by cystathionine, not cysteine, via reversal of the transsulfuration pathway. The evolution of shared metabolic pathways in this symbiosis can be attributed to host compensation for genomic deterioration in the symbiont, involving changes in host gene expression networks to recruit specific enzymes to the host cell.  相似文献   

8.
A novel thymidine-producing strain of Escherichia coli was prepared by genome recombineering. Eleven genes were deleted by replacement with an expression cassette, and 7 genes were integrated into the genome. The resulting strain, E. coli HLT013, showed a high thymidine yield with a low deoxyuridine content. DNA microarrays were then used to compare the gene expression profiles of HLT013 and its isogenic parent strain. Based on microarray analysis, the pyr biosynthesis genes and 10 additional genes were selected and then expressed in HLT013 to find reasonable candidates for enhancing thymidine yield. Among these, phage shock protein A (PspA) showed positive effects on thymidine production by diminishing redox stress. Thus, we integrated pspA into the HLT013 genome, resulting in E. coli strain HLT026, which produced 13.2 g/liter thymidine for 120 h with fed-batch fermentation. Here, we also provide a basis for new testable hypotheses regarding the enhancement of thymidine productivity and the attainment of a more complete understanding of nucleotide metabolism in bacteria.  相似文献   

9.
细胞代谢过程分析方法及模型优化   总被引:2,自引:0,他引:2  
细胞代谢是一个复杂的生物化学反应体系 ,可以在不同的水平上进行调控 ,如控制酶数量的翻译水平调控和调节酶活性的反应水平调控。细胞代谢为了一系列的特定目标而趋于最优化状态 ,如减少能量生产、减少NADP的合成、增强氧气输送等等[1] 。在漫长的生物进化过程中 ,细胞已达到了这样的最优化状态。然而在一定的介质和条件下 ,生化反应中的微生物并不能充分发挥其潜在的全部催化活性 ,这是由于野生菌株还未能适应其新的目标———根据人类需要最大化生产或选择性生产特定物质。代谢工程通常被认为是“提高细胞活性的工程” ,是利用基因工…  相似文献   

10.
11.
一株高度变异的中国SV40分离株的全基因组序列分析   总被引:2,自引:0,他引:2  
对SV40中国云南分离株YNQD38进行了全基因组核苷酸序列测定。覆盖了整个基因组的9个重叠的基因片段被扩增和测序,与其它SV40株进行了序列比对并基于全基因序列建立了遗传进化树。结果显示:基因组全长5125bp,基因组构成与其它SV40毒株相似,均有6个开放读码框架和1个调控区。YNQD38与已被证实高度保守的其它SV40比,全基因组核苷酸同源性仅为91.0%。在SV40的保守区VP1、VP2、VP3、小t抗原(t-ag)和部分大T抗原(不包括大T抗原C末端)区,YNQD38与其它SV40之间核苷酸同源性分别为90.7%~91.1%、91.7%~92.0%、90.2%~90.8%、92.8%~93.3%、88.5%~89.7%。在SV40的可变区大T抗原C末端(T-ag-C)编码区,YNQD38同源性更低,仅为65.7%~74.3%。YNQD38发生在保守区的核苷酸变异多为无义突变,而发生在变异区的核苷酸变异多为有义突变。YNQD38的调控区缺少一个完整的72bp增强子,这种特别的调控区的结构以前未见报道。基于整个基因组构建的进化树显示该株病毒形成了一个独特的组。以上结果表明YNQD38是目前报道的SV40中变异最大的一株,而且也是第一株被完整测序的SV40中国株。这个报道不仅为SV40中国株的基础研究提供了一个完整清楚的分子生物学资料,还对这样一株高度变异的SV40能否成为人类致病因子进行了初步探讨。  相似文献   

12.
The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established.  相似文献   

13.
王伟  李林  张忠明  张震  刘凡 《微生物学通报》2010,37(9):1287-1292
从山东崅屿采集的黄棕壤中分离得到一株具有抗Mn(Ⅱ)和Mn(Ⅱ)氧化双重活性的芽胞杆菌,其最高Mn(Ⅱ)耐受浓度达到130mmol/L,对Mn(Ⅱ)的氧化活性为3.3μmol/(L·d)。通过个体形态与培养特征观测、生理生化反应、G+Cmol%测定和16SrDNA序列比对分析等鉴定,确定该菌株为巨大芽胞杆菌(Bacillus megaterium),命名为MB283。该菌株在添加Mn(Ⅱ)(10mmol/L)条件下比不添加Mn(Ⅱ)表现出相对较快的生长速率。采用高温培养并结合0.01%SDS处理,从MB283菌株筛选到一株发生内生质粒消除的突变株MB287,具有与野生菌株类似的锰耐受活性,且对Mn(Ⅱ)的氧化活性与野生菌株相比无明显改变,表明野生菌株MB283中与锰抗性和锰氧化相关的基因可能是定位于该菌的染色体上。  相似文献   

14.
The regulation of cellular metabolism facilitates robust cellular operation in the face of changing external conditions. The cellular response to this varying environment may include the activation or inactivation of appropriate metabolic pathways. Experimental and numerical observations of sequential timing in pathway activation have been reported in the literature. It has been argued that such patterns can be rationalized by means of an underlying optimal metabolic design. In this paper we pose a dynamic optimization problem that accounts for time-resource minimization in pathway activation under constrained total enzyme abundance. The optimized variables are time-dependent enzyme concentrations that drive the pathway to a steady state characterized by a prescribed metabolic flux. The problem formulation addresses unbranched pathways with irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are assumed. In the optimal solution, each enzyme follows a switching profile between zero and maximum concentration, following a temporal sequence that matches the pathway topology. This result provides an analytic justification of the sequential activation previously described in the literature. In contrast with the existent numerical approaches, the activation sequence is proven to be optimal for a generic class of monomolecular kinetics. This class includes, but is not limited to, Mass Action, Michaelis–Menten, Hill, and some Power-law models. This suggests that sequential enzyme expression may be a common feature of metabolic regulation, as it is a robust property of optimal pathway activation.  相似文献   

15.
16.
Growth factors and oncogenic kinases play important roles in stimulating cell growth during development and transformation. These processes have significant energetic and synthetic requirements and it is apparent that a central function of growth signals is to promote glucose metabolism to support these demands. Because metabolic pathways represent a fundamental aspect of cell proliferation and survival, there is considerable interest in targeting metabolism as a means to eliminate cancer. A challenge, however, is that molecular links between metabolic stress and cell death are poorly understood. Here we review current literature on how cells cope with metabolic stress and how autophagy, apoptosis, and necrosis are tightly linked to cell metabolism. Ultimately, understanding of the interplay between nutrients, autophagy, and cell death will be a key component in development of new treatment strategies to exploit the altered metabolism of cancer cells.Although single-celled organisms grow and proliferate based on nutrient availability, metazoan cells rely on growth factor input to promote nutrient uptake, regulate growth and proliferation, and survive (Raff 1992; Rathmell et al. 2000). Access and competition for these signals are critical in developmental patterning and to maintain homeostasis of mature tissues. Cells that do not receive proper growth factor signals typically atrophy, lose the ability to uptake and use extracellular nutrients, and instead induce the self-digestive process of autophagy as an intracellular energy source before ultimately undergoing programmed cell death. Cancer cells, in contrast, often become independent of extracellular growth signals by gaining mutations or expressing oncogenic kinases to drive intrinsic growth signals that mimic growth factor input, which can be the source of oncogene addiction. Growth factor input or oncogenic signals often drive highly elevated glucose uptake and metabolism (Rathmell et al. 2000; DeBerardinis et al. 2008; Michalek and Rathmell 2010). First described in cancer by Warburg in the 1920s, this highly glycolytic metabolic program is termed aerobic glycolysis and is a general feature of many nontransformed proliferative cells (Warburg 1956; DeBerardinis et al. 2008).Nutrient uptake and aerobic glycolysis induced by growth signals play key roles in cell survival (Vander Heiden et al. 2001). Manipulating cell metabolism as a means to promote the death of inappropriately dividing cells, therefore, is a promising new avenue to treat disease. Targeting the altered metabolism of cancer cells in particular is of great interest. It is still unclear at the molecular level, however, how inhibiting or modulating cell metabolism leads to apoptosis, and how these pathways may best be exploited (Dang et al. 2009; Wise and Thompson 2010).Growth factor or oncogenic kinases promote multiple metabolic pathways that are essential to prevent metabolic stress and may be targets in efforts to link metabolism and cell death (Vander Heiden et al. 2001). Decreased glucose metabolism on loss of growth signals leads to decreased ATP generation as well as loss in generation of many biosynthetic precursor molecules, including nucleic acids, fatty acids, and acetyl-CoA for acetylation (Zhao et al. 2007; Wellen et al. 2009; Coloff et al. 2011). Glucose is also important as a precursor for the hexosamine pathway, to allow proper glycosylation and protein folding in the endoplasmic reticulum (Dennis et al. 2009; Kaufman et al. 2010). If glucose metabolism remains insufficient or disrupted, the cells can switch to rely on mitochondrial oxidation of fatty acids and amino acids, which are energy rich but do not readily support cell growth and can lead to potentially dangerous levels of reactive oxygen species (Wellen and Thompson 2010). Amino acid deficiency can directly inhibit components of the signaling pathways downstream from growth factors and activate autophagy (Lynch 2001; Beugnet et al. 2003; Byfield et al. 2005; Nobukuni et al. 2005). Finally, hypoxia induces a specific pathway to increase nutrient uptake and metabolism via the hypoxia-inducible factor (HIF1/2α) that promotes adaptation to anaerobic conditions, but may lead to apoptosis if hypoxia is severe (Saikumar et al. 1998; Suzuki et al. 2001; Fulda and Debatin 2007).Typically a combination of metabolic stresses rather than loss of a single nutrient input occur at a given time (Degenhardt et al. 2006) and autophagy is activated to mitigate damage and provide nutrients for short-term survival (Bernales et al. 2006; Tracy et al. 2007; Altman et al. 2011; Guo et al. 2011). Autophagy is a cellular process of bulk cytoplasmic and organelle degradation common to nearly all eukaryotes. Unique double-membraned vesicles known as autophagosomes engulf cellular material and fuse with lysosomes to promote degradation of the contents (Kelekar 2005). Described in greater detail below, autophagy can reduce sources of stress, such as protein aggregates and damaged or dysfunctional intracellular organelles, and provide nutrients during times of transient and acute nutrient withdrawal.Despite the protective effects of autophagy, cells deprived of growth signals, nutrients, or oxygen for prolonged times will eventually succumb to cell death. Apoptosis is the initial death response on metabolic stress and is regulated by Bcl-2 family proteins. In healthy cells, antiapoptotic Bcl-2 family proteins, such as Bcl-2, Bcl-xl, and Mcl-1, bind and inhibit the multidomain proapoptotic proteins Bax and Bak (van Delft and Huang 2006; Walensky 2006; Chipuk et al. 2010). In metabolic stress, proapoptotic “BH3-only” proteins of the Bcl-2 family are induced or activated and bind to and inhibit the antiapoptotic Bcl-2 family proteins to allow activation of the proapoptotic Bax and Bak (Galonek and Hardwick 2006). The BH3-only proteins Bim, Bid, and Puma can also directly bind and activate Bax and Bak (Letai et al. 2002; Ren et al. 2010). Active Bax and Bak disrupt the outer mitochondrial membrane (termed mitochondrial outer-membrane permeabilization, or MOMP) and release several proapoptotic factors including cytochrome-C that activate the apoptosome that in turn activates effector caspases to cleave a variety of cellular proteins and drive apoptosis (Schafer and Kornbluth 2006). In cases in which these apoptotic pathways are suppressed, metabolic stress can instead lead to necrotic cell death (Jin et al. 2007).  相似文献   

17.
18.
Abiotic environmental stresses such as drought, salinity andlow temperature are major limitations for plant growth and cropproductivity. Certain plants, marine algae and bacteria haveevolved a number of adaptations to such abiotic stresses: someof these adaptations are metabolic and others structural. Accumulationof certain organic solutes (known as osmoprotectants) is a commonmetabolic adaptation found in diverse taxa. These solutes protectproteins and membranes against damage by high concentrationsof inorganic ions. Some osmoprotectants also protect the metabolicmachinery against oxidative damage. Many major crops lack theability to synthesize the special osmoprotectants that are naturallyaccumulated by stress-tolerant organisms. Therefore, it washypothesized that installing osmoprotectant synthesis pathwaysis a potential route to breed stress-tolerant crops. Provingthis, recent engineering efforts in model species led to modestbut significant improvements in stress tolerance of transgenicplants. Synthetic pathways to two kinds of osmoprotectants—polyolsand quaternary ammonium compounds—are discussed here.Results from the metabolic engineering experiments emphasizethe need for a greater understanding of primary metabolic pathwaysfrom which osmoprotectant synthesis pathways branch. Futureresearch avenues include the identification and exploitationof diverse osmoprotectants in naturally stress-tolerant organisms,and the use of multiple genes and reiterative engineering toincrease osmoprotectant flux in response to stress. High-throughputgenomic technologies offer a number of tools to refine thisby rapidly identifying genes, pathways, and regulatory controls.Copyright 2000 Annals of Botany Company Review, abiotic stress, osmoprotectant, compatible solute, genetic engineering  相似文献   

19.
Algal production of dissolved organic carbon and the regeneration of nutrients from dissolved organic carbon by bacteria are important aspects of nutrient cycling in the sea, especially when inorganic nitrogen is limiting. Dissolved free amino acids are a major carbon source for bacteria and can be used by phytoplankton as a nitrogen source. We examined the interactions between the phytoplankton species Emiliania huxleyi and Thalassiosira pseudonana and a bacterial isolate from the North Sea. The organisms were cultured with eight different amino acids and a protein as the only nitrogen sources, in pure and mixed cultures. Of the two algae, only E. huxleyi was able to grow on amino acids. The bacterium MD1 used all substrates supplied, except serine. During growth of MD1 in pure culture, ammonium accumulated in the medium. Contrary to the expectation, the percentage of ammonium regenerated from the amino acids taken up showed no correlation with the substrate C/N ratio. In mixed culture, the algae grew well in those cultures in which the bacteria grew well. The bacterial yields (cell number) were also higher in mixed culture than in pure culture. In the cultures of MD1 and T. pseudonana, the increase in bacterial yield (number of cells) over that of the pure culture was comparable to the bacterial yield in mixed culture on a mineral medium. This result suggests that T. pseudonana excreted a more-or-less-constant amount of carbon. The bacterial yields in mixed cultures with E. huxleyi showed a smaller and less consistent difference than those of the pure cultures of MD1. It is possible that the ability of E. huxleyi to use amino acids influenced the bacterial yield. The results suggest that interactions between algae and bacteria influence the regeneration of nitrogen from organic carbon and that this influence differs from one species to another.  相似文献   

20.
Eleven strains of methanogenic bacteria were divided into two groups on the basis of the directionality (oxidative or reductive) of their citric acid pathways. These pathways were readily identified for most methanogens from the patterns of carbon atom labeling in glutamate, following growth in the presence of [2-13C]acetate. All used noncyclic pathways, but members of the family Methanosarcinaceae were the only methanogens found to use the oxidative direction. Methanococcus jannaschii failed to incorporate carbon from acetate despite transmembrane equilibration comparable to other weak acids. This organism was devoid of detectable activities of the acetate-incorporating enzymes acetyl coenzyme A synthetase, acetate kinase, and phosphotransacetylase. However, incorporation of [1-13C]-, [2-13C]-, or [3-13C]pyruvate during the growth of M. jannaschii was possible and resulted in labeling patterns indicative of a noncyclic citric acid pathway operating in the reductive direction to synthesize amino acids. Carbohydrates were labeled consistent with glucogenesis from pyruvate. Leucine, isoleucine, phenylalanine, lysine, formate, glycerol, and mevalonate were incorporated when supplied to the growth medium. Lysine was preferentially incorporated into the lipid fraction, suggesting a role as a phytanyl chain precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号