共查询到17条相似文献,搜索用时 51 毫秒
1.
复合随机Duffing系统可靠性分析 总被引:1,自引:0,他引:1
基于参数α=2的Gegenbauer正交多项式展开方法,研究了大变异系数情况下复合随机强Duffing体系的可靠性分析问题.应用随机空间的正交多项式展开方法,Edgeworth级数逼近技术求取了强非线性随机振动系统响应的前四阶矩以及概率密度函数.基于首次超越模型,讨论了复合随机强Duffing体系的可靠性分析问题.提出了系统动态可靠度与系统平均可靠度的区别、联系以及各自特点,发展了可靠度数值计算公式.分析计算结果与Monte-Carlo模拟结果较好符合,表明该方法的正确与有效.关键词:随机Duffing方程动态可靠度平均可靠度Gegenbauer正交多项式 相似文献
2.
3.
讨论了具有有界随机参数的随机Bonhoeffer-Van der Pol系统的随机混沌现象,并利用噪声对其进行控制.首先运用Chebyshev多项式逼近的方法,将随机Bonhoeffer-Van der Pol系统转化为等价的确定性系统,使原系统的随机混沌控制问题转换为等价的确定性系统的确定性混沌控制问题,继而可用Lyapunov指数指标来研究等价确定性系统的确定性混沌现象和控制问题.数值结果表明,随机Bonhoeffer-Van der Pol系统的随机混沌现象与相应的确定性Bonhoeffer-Van der Pol系统极为相似.利用噪声控制法可将混沌控制到周期轨道,但是在随机参数及其强度的影响下也呈现出一些特点. 相似文献
4.
陈氏混沌系统的非反馈控制 总被引:1,自引:0,他引:1
通过对陈氏混沌系统施加非共振参数激励实现非反馈混沌控制.将远大于系统特征频率的周期信号作为控制输入,利用平均法和Lyapunov方法证明控制方案的可行性,并得出控制参数应满足的条件.数值研究表明此方法可以使受控系统迅速达到稳定状态,且具有较强的抗干扰性能. 相似文献
5.
延迟自反馈控制Hindmarsh-Rose神经元的混沌运动 总被引:1,自引:0,他引:1
利用线性时间延迟自反馈方法,研究单个Hindmarsh-Rose(H-R)神经元模型混沌动力学模式的控制问题.分别将增益因子和时间延迟作为控制参数,通过数值模拟分析,发现在增益因子和时间延迟两个参数组合的一些范围内,混沌动力学模式的H-R神经元运动可自动被控制成时间间隔意义上的单峰、2峰、3峰及4峰的周期或多倍周期模式.延迟时间的选取并无特别要求,不必和嵌入在混沌吸引子内的某不稳周期轨道的周期相同,延迟控制自适应地引导混沌轨到相应的放电峰峰间隔的周期模式上.关键词:H-R神经元延迟反馈控制混沌放电模式峰峰间隔周期 相似文献
6.
应用Laguerre正交多项式逼近法研究了含有随机参数的双势阱Duffing系统的分岔和混沌行为.系统参数为指数分布随机变量的非线性动力系统首先被转化为等价的确定性扩阶系统,然后通过数值方法求得其响应.数值模拟结果的比较表明,含有随机参数的双势阱Duffing系统保持着与确定性系统相类似的倍周期分岔和混沌行为,但是由于随机因素的影响,在局部小区域内随机参数系统的动力学行为会发生突变. 关键词:双势阱Duffing系统指数分布概率密度函数Laguerre多项式逼近随机分岔 相似文献
7.
BOOST变换器延迟反馈混沌控制及其优化 总被引:3,自引:0,他引:3
引入输出延迟反馈控制(time-delay feedback control, TDFC)到峰值电流控制BOOST变换器中,构建了被控系统的离散迭代模型,获取相应的Jacobian矩阵表达式.通过分析变换器在平衡点的变化规律及Jacobian矩阵特征值轨迹,确定出控制系统混沌到单周期态的TDFC反馈增益范围,并依据状态变量和占空比的收敛情况讨论了系统的稳态和动态性能,实现了对TDFC控制参数优化选择.仿真结果证实了所提控制方式的有效和理论分析的正确. 相似文献
8.
9.
延迟-非线性反馈控制混沌 总被引:3,自引:0,他引:3
提出了基于稳定性准则的延迟非线性反馈控制混沌的方法,即SC延迟非线性反馈控制法. 通过对混沌系统的适当分离,得到一个特殊的非线性函数,并利用混沌输出信号与其延迟信号的非线性函数的差,构造了连续反馈输入干扰,以控制混沌轨到某一期望的不稳周期轨上. 该方法继承了延迟反馈控制方法的优点,实现了自-控制过程. 另外由于该方法基于线性系统的稳定性准则,保证了控制的有效性. 控制过程可随时开始,具有简便、灵活性. 给出耦合Duffing振子的例子,数值模拟结果显示了SC延迟反馈方法控制的有效性.关键词:稳定性准则混沌控制延迟反馈干扰 相似文献
10.
陈氏混沌系统的采样数据反馈控制 总被引:3,自引:0,他引:3
提出了基于采样数据反馈控制技术对陈氏混沌系统进行控制的理论.以给定的采样速率对陈氏混沌系统的输出进行采样.利用采样数据去构造离散时间控制算法,以达到将陈氏混沌系统控制到原点的目的.给出了被控制系统渐近稳定的理论证明,并给出了数值试验的结果.关键词: 相似文献
11.
In the case where the knowledge of goal states is not known, the controllersare constructed to stabilize unstable steady states for a coupled dynamossystem. A delayed feedback control technique is used to suppress chaos tounstable focuses and unstable periodic orbits. To overcome the topologicallimitation that the saddle-type steady state cannot be stabilized, anadaptive control based on LaSalle's invariance principle is used to controlchaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). Thecontrol technique does not require any computer analysis of the systemdynamics, and it operates without needing to know any explicit knowledge ofthe desired steady-state position. 相似文献
12.
13.
14.
Control of chaos by a delayed continuous feedback is studied experimentally in a gas discharge plasma. The power spectrum, the maximum of Lyapunov exponents and the time series of the signals all indicate that the period-1 unstable periodic orbit is controlled successfully. The dependence of the control on the delay time and the feedback gain as well as the strength of white noise is also investigated in detail. The experimental results show that the scaling index of the control versus the strength of white noise is 1.995, which is very close to that obtained from the simple logistic map. 相似文献
15.
An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized. 相似文献
16.
The Chebyshev polynomial approximation is applied to investigate the stochasticperiod-doubling bifurcation and chaos problems of a stochastic Duffing--vander Pol system with bounded random parameter of exponential probabilitydensity function subjected to a harmonic excitation. Firstly the stochasticsystem is reduced into its equivalent deterministic one, and then theresponses of stochastic system can be obtained by numerical methods.Nonlinear dynamical behaviour related to stochastic period-doublingbifurcation and chaos in the stochastic system is explored. Numericalsimulations show that similar to its counterpart in deterministic nonlinearsystem of stochastic period-doubling bifurcation and chaos may occur in thestochastic Duffing--van der Pol system even for weak intensity of randomparameter. Simply increasing the intensity of the random parameter mayresult in the period-doubling bifurcation which is absent from thedeterministic system. 相似文献