首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
平地上高速列车的风致安全特性   总被引:6,自引:1,他引:5  
为研究高速列车在强侧风作用下安全行驶问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用该模型计算了不同风向角、不同风速和不同车速下作用于车体上的侧风气动载荷.根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为运行安全指标,分析了头车、中间车和尾车的运行安全性.研究表明:头车的安全性最差,且风向角为90°时,横风情况下最危险.随着车速的增大,最大安全风速急剧减小.当车速为200km/h时,最大安全风速为29.61 m/s;当车速为400 km/h时,最大安全风速为18.87m/s.  相似文献   

2.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

3.
采用NURBS曲面设计方法完成对某型高速列车头车的三维数字化设计建模,基于三维定常不可压的黏性流场N-S及k-ε方程湍流模型,利用有限体积数值模拟方法分析计算出列车的速度阻力函数关系,同时针对列车在不同风向角的强侧风环境中运行时压力场和速度场做了进一步研究。研究发现:在无风明线上运行时列车所受空气阻力与运行速度的平方成正比,侧风运行时随着风向角的扩大空气阻力系数呈现先增大后逐渐下降的变化趋势。流场分布结构复杂不规律,当侧风情况较为严重时正压区主要分布在迎风侧,负压区主要分布在背风侧和车顶部位,且负压表现更为强烈,列车前端滞止点向迎风侧发生偏移,致使迎风侧与背风侧产生巨大压差。  相似文献   

4.
针对高速列车驶出兰新第二双线特有防风明洞工程时存在突变气动载荷,探讨了抗侧滚扭杆对国内某型高速列车抗倾覆安全性的影响.采用日本Yu Hibino详细解析式方法,针对国内某型高速列车建立其车辆倾覆受力及倾覆力学模型,对车速、风速和风向角变化时,抗侧滚扭杆对该型高速列车的倾覆系数和侧滚角等的影响进行了计算研究.分析结果表明:抗侧滚扭杆有效改善了该型高速列车的抗倾覆性能.增设抗侧滚扭杆后,车辆倾覆系数降低约10%,侧滚角降低约75%.  相似文献   

5.
为研究高速列车在强横风作用下通过曲线桥梁的安全性问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用所建立的模型计算了不同风速、不同车速、不同线路条件下作用于车体上的气动载荷,并且以脱轨系数、轮重减载率、倾覆系数、轮轴横向力和轮轨垂向力为运行安全性指标,分析了高速列车通过曲线桥梁的运行安全性.研究表明:横风下高速列车通过曲线桥梁时,列车的安全性受气动力和曲线超高双重影响.在低风速、低车速时,曲线超高对于列车安全性的影响起主要作用;随着风速变大,气动力对于列车安全性的影响远大于曲线过超高对于列车安全性的影响.在各工况中,当风从曲线桥梁的内侧吹向外侧,并且高速列车运行在曲线桥梁的迎风侧时,高速列车的最大安全风速最小,因此,在校核横风下高速列车过曲线桥梁安全性时,可以直接选用该工况来校核列车的安全性.  相似文献   

6.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

7.
高速列车侧风效应的数值模拟   总被引:1,自引:0,他引:1  
在侧风作用下,高速列车的空气动力学性能发生显著改变.基于三维定常可压缩流动的N-S方程,采用SST k-ω两方程湍流模型和有限体积法,对某型高速列车以350km/h的速度在25m/s侧风环境中运行的流场结构和气动力进行了数值模拟计算,分析了不同风向角的侧风对列车全车,以及受电弓、转向架和风挡等局部区域的作用.结果表明:在侧风作用下,列车的周围包括转向架处均产生复杂的涡流,压力分布十分复杂,转向架对流场的影响不容忽视;随着风向角(0~90°)的增大,侧向力系数及倾覆力矩系数也增大,列车倾覆及脱轨的风险性增加,且头车的倾覆力矩系数远大于中间车和尾车的倾覆力矩系数,应注重对头车的气动性能研究.  相似文献   

8.
基于三维定常不可压的黏性流场N-S及方程湍流模型,利用有限体积数值模拟方法分析计算出某型时速350 km/h高速列车在明线及特长双线隧道内运行时的局部流场结构及压力波分布情况。研究发现:流场分布结构复杂且不规律,整体趋势上列车靠近隧道的一侧所受静压大于靠近中心线的一侧所受静压,同时迎风侧压力波动现象较为明显,且两侧所受静压沿列车长度方向逐渐减小;隧道方面:列车侧与无车侧内轮廓所受静压沿列车长度方向逐渐增大,然后于列车头部位置骤降并逐渐趋于平缓下降,到背风侧列车尾部位置突增达到一个极大值,然后逐渐下降并趋于稳定,列车侧内轮廓所受静压沿列车长度方向在靠近列车头车司机室部位,压力波动现象较为明显,且迎风侧压力波动现象较背风侧更为突出,无车侧基本无压力波动现象产生,轮廓静压分布沿着隧道底部逐渐向隧道顶部基本保持稳定。  相似文献   

9.
为了合理控制车辆轮对定位间隙,提高磁流变耦合轮对车辆在高速时的横向动力学性能,建立该车辆的空间动力学模型,分析了轮对纵向定位间隙对车辆临界速度和曲线通过性能的影响。得出了纵向定位间隙的增大能使磁流变耦合轮对车辆的临界速度急剧下降,轮对横移量和冲角、轮轨横向力和车体横移加速度快速增大;只有在小间隙的条件下,车辆在高速铁路上才具有较高的临界速度和较好的曲线通过性能。  相似文献   

10.
列车由隧道驶上桥梁时会承受突变的风荷载,列车的响应发生突变,导致列车的行车安全受到威胁. 以某客运专线桥隧过渡段为研究背景,通过计算流体动力学 (CFD) 数值模拟和车桥耦合振动分析,计算了CRH3型列车通过桥隧过渡段时受到的气动力及车辆响应;对比分析了头车、中间车及尾车的气动力及列车响应,研究了大风攻角对列车气动力及行车响应的影响,探讨了最不利的安全指标. 研究结果表明:越靠近车头的车体,气动力突变与列车响应越大;相比0° 攻角,正风攻角对行车相对有利,+7° 的风攻角下列车受到的气动阻力和力矩减小了约10%;负风攻角会增大列车的气动力突变效应和行车响应,?7° 风攻角下列车受到的气动阻力和力矩增加了约10%;风速在22.5 m/s以下时,CRH3列车能够以200 km/h的车速安全通过桥隧过渡段;20 m/s风速时,车速在325 km/h以下时列车能够安全通过桥隧过渡段;随着车速与风速的增加,轮轴横向力是首先超限的安全性指标.   相似文献   

11.
使用参数传递、求解控制以及动态网格技术,建立了侧风流体动力学模型和高速列车多体动力学模型,通过对列车外流场和系统响应进行协同仿真,获得不同侧风环境下列车的稳定姿态和气动载荷,研究了列车运行的安全性指标,分析了不同侧风环境下列车安全运行的临界速度,确定了列车的侧风作用安全域。计算结果表明:随着列车运行速度和侧风强度的增大...  相似文献   

12.
高速列车弹性车体与转向架耦合振动分析   总被引:1,自引:0,他引:1  
建立了某高速列车车体有限元模型,采用Guyan缩减进行模态求解,结合SIMPACK多体动力学软件建立包含弹性车体的系统动力学模型。运用模型分析了车体弹性模态对运行平稳性的影响,研究了弹性车体与转向架构架垂向耦合振动。分析结果表明:当车体垂向一阶弯曲频率与车体点头振动空响应点频率接近时,会发生车体的垂向弹性共振;当车体菱...  相似文献   

13.
随着高速列车运行速度的提高,其气动噪声问题逐渐凸显,如何准确快速预测高速列车的远场气动噪声成为关键.利用半自由空间的Green函数求解FW-H方程,推导了考虑半模型时的远场声学积分公式,提出通过半模型的数值计算结果预测全模型高速列车远场气动噪声的方法;建立了全模型和半模型高速列车的气动噪声数值计算模型,应用改进延迟的分离涡模拟方法对不同模型高速列车表面的气动噪声源进行求解;通过风洞试验进行了全模型高速列车的数值仿真计算方法验证;对比分析了全模型和半模型高速列车周围的流场结构、气动噪声源和远场气动噪声特性.结果表明:半模型高速列车数值计算得到的列车周围流场结构、气动噪声源以及远场气动噪声特性与全模型的一致;采用半模型计算会过高估计列车尾车流线型区域表面压力的波动程度和噪声源的辐射强度,但通过半模型预测整车模型的远场噪声平均声压级误差小于1 dBA;相比于全模型高速列车,半模型计算时的网格总量减少一半.  相似文献   

14.
中国列车空气动力学研究进展   总被引:34,自引:9,他引:25  
论述了列车空气动力学研究方法:数值模拟计算、风洞试验、动模型试验和在线实车试验;讨论了几种典型列车的空气动力性能:中华之星高速列车、双层集装箱货运列车、磁浮高速列车;建立了列车交会压力波、线间距、安全退避距离的理论关系式;研究了列车流线形外形与气动性能的关系:流线形头形、车身截面外形、列车编组方式、车体表面以及影响气动性能的受电弓导流罩、外风挡、底罩及裙板、导流板等主要部件,介绍了研制流线形列车车体的成套技术及全面推广应用情况;研究了隧道-列车耦合空气动力特性;论述了为既有线5次大提速、百里强风区的兰新铁路解决的列车空气动力影响行车安全问题。  相似文献   

15.
磁悬浮列车高速运行时受到较大气动升力作用,尤其是尾车向上的气动升力较大,易使悬浮性能恶化,甚至导致悬浮控制系统失效,影响列车的乘坐舒适性及运行安全性,因此亟待开展高速磁悬浮列车的尾车升力特性研究及改善工作. 对开展过风洞试验的高速磁悬浮列车进行数值模拟计算,得到的列车表面压力系数与风洞实验数据吻合较好,并加装气动翼改善高速磁悬浮尾车气动升力,研究了气动翼角度、数量对尾车气动性能的影响. 研究结果表明:仅安装一个气动翼时,其自身的气动升力随角度的增加而减小,但尾车气动升力则呈现先减小后增大的规律,气动翼角度为12.5° 时尾车升力最小,与原始磁悬浮列车相比气动升力系数减小3.9%,气动翼及尾车气动阻力略有增加;以气动翼与车体切线角度保持不变为基准在尾车安装多个12.5° 气动翼,不同位置气动翼的气动阻力基本相同,气动翼数量增加后尾车气动阻力随之增大;不同位置气动翼的气动升力存在差异,向鼻尖方向气动翼的气动升力递减,尾车气动升力随气动翼数量增加先减小后趋于稳定;各方案中安装2个气动翼的磁悬浮列车气动性能相对更优,与原始磁悬浮列车相比尾车气动升力减小4.6%,整车阻力仅增加1.4%.   相似文献   

16.
为改善高速列车横风下运行的动力学性能, 提高运行平稳性和安全性, 以轮轴横向力和轮重减载率为优化目标, 对高速列车动力学模型的悬挂参数进行多目标优化设计; 建立高速列车多体动力学参数化模型, 依照大风限速标准, 加载列车在横风下以不同速度运行的气动力数据, 选取了止挡间隙、一系悬挂纵向和垂向刚度、二系悬挂纵向和垂向刚度、一系垂向减振器刚度、二系横向和垂向减振器刚度、抗蛇形减振器刚度及阻尼11个变量; 搭建高速列车动力学模型优化平台, 对高速列车多体动力学参数化模型的设计参数与轮轴横向力和轮重减载率的相关性进行分析, 得到列车各悬挂参数对轮轴横向力和轮重减载率的影响趋势; 基于相关性结果, 采用NCGA、AMGA和NSGA-Ⅱ遗传算法对高速列车的动力学参数进行优化设计。分析结果表明: 采用NSGA-Ⅱ算法的优化结果最为理想; 与轮轴横向力和轮重减载率相关性最大的参数为抗蛇形减振器刚度, 为反效应; 优化后列车的动力学性能得到明显的改善, 轮重减载率从原始的0.78整体优化到0.63以下, 且最小可以优化到0.49, 最高可降低37.2%;轮轴横向力从原始的16.8 kN整体优化到9.6 kN以下, 且最小可以优化到5.79 kN, 最高可降低65.5%;得到了优化目标的Pareto前沿最优解, 确定了列车各动力学参数设计变量的最优解集, 并对最优解集在其他列车速度和风速组合下的运行工况进行验证, 适用性较好。   相似文献   

17.
为提高明线运行的高速列车气动性能,以头车气动阻力和尾车气动升力为优化目标,对高速列车头型进行了多目标自动优化设计.以某新型高速列车为原型,建立了包含转向架区域的高速列车参数化模型,提取了7个设计变量,分别控制鼻尖高度、端盖开闭机构顶端高度、驾驶室车窗高度、水平最大外轮廓线横向宽度、头型中部辅助控制线凹凸度、转向架区域横向宽度和隔墙倾角,并基于计算流体动力学理论,建立了高速列车空气动力学模型.应用该模型计算作用在列车上的气动力,通过多目标遗传算法自动更新设计变量,实现了高速列车头型的自动优化设计.对优化目标与设计变量的相关性进行分析,结果表明:驾驶室车窗高度和转向架区域横向宽度对头车阻力影响最大,头型鼻尖高度和中部辅助控制线凹凸度对尾车升力影响最大;优化后得到6个Pareto最优头型,与优化前的头型相比,头车阻力最多减小3.15%,尾车升力最多减小17.05%.   相似文献   

18.
中国高速列车气动减阻优化综述   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号