首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the problem of delay-dependent robust H control for uncertain fuzzy Markovian jump systems with time delays. The purpose is to design a mode-dependent state-feedback fuzzy controller such that the closed-loop system is robustly stochastically stable and satisfies an H performance level. By introducing slack matrix variables, a delay-dependent sufficient condition for the solvability of the problem is proposed in terms of linear matrix inequalities. An illustrative example is finally given to show the applicability and effectiveness of the proposed method. Recommended by Editorial Board member Young Soo Suh under the direction of Editor Jae Weon Choi. This work is supported by the National Science Foundation for Distinguished Young Scholars of P. R. China under Grant 60625303, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20060288021, and the Natural Science Foundation of Jiangsu Province under Grant BK2008047. Yashun Zhang received the B.S. and M.S. degrees in Control Science and Control Engineering from Hefei University of Science and Technology in 2003 and 2006. He is currently a Ph.D. student in Control Science and Control Engineering, Nanjing University of Science and Technology. His research interests include fuzzy control, sliding mode control and nonlinear control. Shengyuan Xu received the Ph.D. degree in Control Science and Control Engineering from Nanjing University of Science and Technology in 1999. His research interests include robust filtering and control, singular systems, time-delay systems and nonlinear systems. Jihui Zhang is a Professor in the School of Automation Engineering of Qingdao University, China. His main areas of interest are discrete event dynamic systems, production planning and control, and operations research.  相似文献   

2.
3.
This paper concerns the problem of H filtering for piecewise homogeneous Markovian jump nonlinear systems. Different from the existing studies in the literatures, the existence of variations in transition rates for Markovian jump nonlinear systems is considered. The purpose of the paper is to design mode-dependent and mode-independent filters, such that the dynamics of the filtering errors are stochastic integral input-to-state stable with H performance index. Using the linear matrix inequality method and the Lyapunov functional method, sufficient conditions for the solution to the H filtering problem are derived. Finally, three examples are proposed to illustrate the effectiveness of the given theoretical results.  相似文献   

4.
This paper investigates the exponential stabilisation and H control problem of neutral stochastic delay Markovian jump systems. First, a delay feedback controller is designed to stabilise the neutral stochastic delay Markovian jump system in the drift part. Second, sufficient conditions for the existence of feedback controller are proposed to ensure that the resulting closed-loop system is exponentially stable in mean square and satisfies a prescribed H performance level. Finally, numerical examples are provided to show the effectiveness of the proposed design methods.  相似文献   

5.
This paper first discusses the H control problem for a class of general nonlinear Markovian jump systems from the viewpoint of geometric control theory. Following with the updating of the Markovian jump mode, the appropriate diffeomorphism can be adopted to transform the system into special structures, which establishes the basis for the geometric control of nonlinear Markovian jump systems. Through discussing the strongly minimum-phase property or the strongly γ-dissipativity of the zero-output dynamics, the H control can be designed directly without solving the traditional coupled Hamilton–Jacobi inequalities. A numerical example is presented to illustrate the effectiveness of our results.  相似文献   

6.
《Systems & Control Letters》2004,51(3-4):203-215
This paper deals with the problems of robust stabilization and robust H control for discrete stochastic systems with time-varying delays and time-varying norm-bounded parameter uncertainties. For the robust stabilization problem, attention is focused on the design of a state feedback controller which ensures robust stochastic stability of the closed-loop system for all admissible uncertainties, while for the robust H control problem, a state feedback controller is designed such that, in addition to the requirement of the robust stochastic stability, a prescribed H performance level is also required to be satisfied. A linear matrix inequality (LMI) approach is developed to solve these problems, and delay-dependent conditions for the solvability are obtained. It is shown that the desired state feedback controller can be constructed by solving certain LMIs. An example is provided to demonstrate the effectiveness of the proposed approach.  相似文献   

7.
8.
We establish conjugation notion in discrete-time systems, first introduced into the H control theory of continuous-time systems by Kimura (1989). In discrete-time systems, conjugation is a very elementary operation on rational transfer functions that replaces some of their poles by their reflections with respect to the unit circle. With the aid of J-lossless conjugation conjugation by a J.lossless system), it is shown that the parametrization of sub-optimal solutions of H model-matching problems is reduced to a Lyapunov-type equation. The parametrization of all solutions is given in an extremely simple way. It is further proved that the J-lossless conjugation of the H model-matching problem is a natural state-space representation of classical interpolation in discrete-time systems.  相似文献   

9.
This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.  相似文献   

10.
In this paper, robust H control for a class of uncertain stochastic Markovian jump systems (SMJSs) with interval and distributed time-varying delays is investigated. The jumping parameters are modelled as a continuous-time, finite-state Markov chain. By employing the Lyapunov-Krasovskii functional and stochastic analysis theory, some novel sufficient conditions in terms of linear matrix inequalities are derived to guarantee the mean-square asymptotic stability of the equilibrium point. Numerical simulations are given to demonstrate the effectiveness and superiority of the proposed method comparing with some existing results.  相似文献   

11.
This paper revisits the problem of robust H filtering design for a class of discrete-time piecewise linear state-delayed systems. The state delay is assumed to be time-varying and of an interval-like type, which means that both the lower and upper bounds of the time-varying delay are available. The parameter uncertainties are assumed to have a structured linear fractional form. Based on a novel delay-dependent piecewise Lyapunov–Krasovskii functional combined with Finsler's Lemma, a new delay-dependent sufficient condition for robust H performance analysis is first derived and then the filter synthesis is developed. It is shown that by using a new linearisation technique, a unified framework can be developed so that both the full-order and reduced-order filters can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a numerical example is provided to illustrate the effectiveness and less conservatism of the proposed approach.  相似文献   

12.
13.
This article is concerned with the delay-dependent H -filtering problem for discrete-time switched systems with a state delay. By using the switched Lyapunov functional method and choosing a new Lyapunov–Krasovskii functional, and, furthermore, utilising the linearisation technique, sufficient conditions on the existence of a desired filter are formulated as strict linear matrix inequalities. Neither model transformation nor the bounding technique for cross-terms is involved. A numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

14.
This study employs the multiple Lyapunov-like function method and the average dwell-time concept of switching signal to investigate the finite-time H static output-feedback (SOF) control problem for a class of discrete-time switched singular time-delay systems subject to actuator saturation. First, sufficient conditions are presented to guarantee the discrete-time switched singular time-delay system regular, causal and finite-time boundedness. Meanwhile, sufficient conditions are presented to ensure the H disturbance attenuation level, and the design method of H SOF controller is developed by solving matrix inequalities optimisation problem without any decompositions of system matrices and equivalent transformation. Finally, the effectiveness and merit of the theoretical results are shown through some numerical examples and several vivid illustrations.  相似文献   

15.
This note is concerned with a saturating composite disturbance-observer-based control (DOBC) and H control for a class of discrete time-delay systems with nonlinearity and disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H 2 norm, which can represent parametric uncertainties and external disturbance existing in the controlled object. The design approaches of reduced-order disturbance observer are presented for the estimation of the disturbance. By composite control law with saturation, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for discrete time-delay systems with known and unknown nonlinear dynamics, respectively. Simulation for a flight control system is provided to show the effectiveness of the proposed scheme compared with the previous schemes.  相似文献   

16.
17.
18.
An extension of a fixed transition probability (TP) Markovian switching model to combine time-varying TPs has offered another set of useful regime-switching models. This paper is concerned with the problem of finite-time H control for a class of discrete-time Markovian jump systems with partly unknown time-varying TPs subject to average dwell time switching. The so-called time-varying TPs mean that the TPs are varying but invariant within an interval. The variation of the TPs considered here is subject to a class of slow switching signal. Based on selecting the appropriate Lyapunov–Krasovskii functional, sufficient conditions of finite-time boundedness of Markovian jump systems are derived and the system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method.  相似文献   

19.
The problem of robust H control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control systems (NCSs) with state quantisation is investigated. A new model of network-based control with simultaneous consideration of network-induced delays and packet dropouts is proposed. By using a fuzzy Lyapunov–Krasovskii functional (LKF), we derive a less conservative delay-dependent stability condition for the closed-loop NCSs. Robust H fuzzy controller is developed for the asymptotical stabilisation of the NCSs. Since it is not expressed as strict LMI conditions, the cone complementary linearisation procedure is exploited to solve the nonconvex feasibility problem. A numerical example shows the feasibility applications of the proposed technique.  相似文献   

20.
In this paper, the problem of H output feedback control for switched linear discrete-time systems with time delays is investigated. The time delay is assumed to be time-varying and bounded. By constructing a switched quadratic Lyapunov function for the underlying system, both static and dynamic H output feedback controllers are designed respectively such that the corresponding closed-loop system under arbitrary switching signals is asymptotically stable and a prescribed H noise-attenuation level bound is guaranteed. A cone complementary linearization algorithm is exploited to design the controllers. A numerical example is presented to show the effectiveness of the developed theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号