首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc–air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc–air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc–air battery based on this material exhibits an open-circuit voltage of 1.49 V, which is higher than that of conventional zinc–air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41 V). The assembled zinc–air battery delivered a peak power density of 168 mW cm−2 at a current density of about 200 mA cm−2, which is higher than that of an equivalent Pt/C cell (151 mW cm−2 at a current density of ca. 200 mA cm−2). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal–air batteries.  相似文献   

2.
The three-dimensional porous structure PbO2 electrodes (3D-PbO2 electrodes) were prepared in the lead nitrate solution by potentiostatically electrodeposition method using oxygen bubble as dynamic template, which can be used as the positive materials of the supercapacitors. The morphology and structure of 3D-PbO2 electrodes were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The supercapacitive performance of 3D-PbO2 electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge tests (GCD) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D-PbO2 electrodes can reach 195.6 F g–1 at 0.2 A g–1, which is 2.8 times higher than that of Flat-PbO2 electrodes (68.8 F g–1). The charge transfer resistance (Rct) of 3D-PbO2 electrodes (8.21 Ohm cm–2) is lower than that of Flat-PbO2 electrodes (21.32 Ohm cm–2). The excellent supercapacitive performance of 3D-PbO2 electrodes can be attributed to the three-dimensional porous structure, which can enlarge the active surface area of lead dioxide electrodes and promote the electrolyte diffusion and electrons propagation.  相似文献   

3.
The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials.  相似文献   

4.
Porous carbon (PC-900) was prepared by direct carbonization of porous metal-organic framework (MOF)-5 (Zn4O(bdc)3, bdc?=?1,4-benzenedicarboxylate) at 900 °C. The carbon material was deposited with PtM (M?=?Fe, Ni, Co, and Cu (20 %) metal loading) nanoparticles using the polyol reduction method, and catalysts PtM/PC-900 were designed for direct ethanol fuel cells (DEFCs). However, herein, we are reporting PtFe/PC-900 catalyst combination which has exhibited superior performance among other options. This catalyst was characterized by powder XRD, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and selected area electron diffraction (SAED) technique. The electrocatalytic capability of the catalyst for ethanol electrooxidation was investigated using cyclic voltammetry and direct ethanol single cell testing. The results were compared with those of PtFe and Pt supported on Vulcan XC72 carbon catalysts (PFe/CX-72 and Pt/XC-72) prepared via the same method. It has been observed that the catalyst PtFe/PC-900 developed in this work showed an outstanding normalized activity per gram of Pt (6.8 mA/g Pt) and superior power density (121 mW/cm2 at 90 °C) compared to commercially available carbon-supported catalysts.  相似文献   

5.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

6.
In this communication we report our research work on low Pt content Pt–Ru–Ir–Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm2. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25–35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner–Emmett–Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts.  相似文献   

7.
The microstructure of the catalyst layer in proton exchange membrane fuel cells (PEMFCs) greatly influences catalyst (Pt) utilization and cell performance. We demonstrated a functionally graded catalyst layer based on a double-layered carbon nanotube/nanofiber film- (buckypaper) supported Pt composite catalyst to approach an idealized microstructure. The gradient distribution of Pt, electrolyte and porosity along the thickness effectively depresses the transport resistance of proton and gas. A rated power of 0.88 W/cm2 at 0.65 V was achieved at 80 °C with a low Pt loading of 0.11 mg/cm2 resulting in a relatively high Pt utilization of 0.18gPt/kW. The accelerated degradation test of catalyst support showed a good durability of buckypaper support because of the high graphitization degree of carbon nanofibers.  相似文献   

8.
Multi-walled carbon nanotubes (MWNTs) were modified by oxyfluorination treatment at several different temperatures of 20, 100, 200, and 300 °C. The changes of surface properties of oxyfluorinated MWNTs were investigated using X-ray photoelectron spectroscopy (XPS) method. As a result, it was found that surface fluorine contents were varied with changing an oxyfluorination temperature and showed a maximum value at 100 °C. By changing the treatment temperature in the process of oxyfluorination for carbon supports, the surface characteristics of MWNTs had been modified, resulting that the size and loading content of deposited Pt on the modified carbon supports could be changed. Consequently, Pt deposited MWNTs that were treated at 100 °C (Pt/100-MWNTs) showed the best electroactivity among samples. The enhanced electroactivity was dependent on the higher surface area of electrochemical reaction for metal catalyst, which was related to the particle size and the morphology of the deposited particle catalysts.  相似文献   

9.
《Electroanalysis》2004,16(17):1451-1458
A new carbon electrode material, obtained by mixing single wall carbon nanotubes (SWNTs) with a mineral oil binder is studied. Carbon nanotube pastes show the special properties of carbon nanotubes combined with the various advantages of composite electrodes such as a very low capacitance (background current) and the possibility of an easy preparation, modification and renewal. A better knowledge of the characteristics of electrode reactions at carbon nanotube paste (CNTP) electrodes was obtained studying the electron transfer rates of various redox couples under different pretreatment conditions. A critical comparison with carbon paste (CP), platinum (Pt) and glassy carbon (GC) electrodes was also carried out. Capacitance and resistance values were also calculated for all electrodes investigated. Both untreated and treated CNTP electrodes showed a low resistance while the capacitance was markedly reduced with CNTP electrodes previously treated with concentrated nitric acid. An electrochemical pretreatment on CNTP electrodes was developed which showed an excellent result towards two‐electron quinonic structure species. After this treatment the heterogeneous standard rate constants for p‐methylaminophenol sulfate (MAP) and dopamine resulted to be significantly higher (2.1×10?2 cm/s and 2.0×10?2 cm/s, respectively) than those obtained with the other electrodes studied. Reproducibility, stability and storage characteristics of CNTP electrodes were also reported.  相似文献   

10.
The poly(9,9-dioctyl fluorine-alt-2-amino-4,6-pyrimidine) (oligomer) is used as an effective dispersant for single walled carbon nanotubes (SWCNTs) and generates stable SWCNTs hybrid after elimination of the excess polymer. The covered polymers immobilized Pt nanoparticles onto the surface of single-walled carbon nanotubes (SWCNTs) by coordination between Pt and polymer and the amount of the loaded Pt on the hybrid was calculated to be 38.5 wt %. The average diameter of the Pt nanoparticles on the SWCNTs were about ~4–5 nm and have a moderate electrochemically active surface area of 40.5 m2/g. These studies strongly imply the possible application of novel pyrimidine/carbon materials as catalyst supports in the electrodes of fuel cells.  相似文献   

11.
A new type of surfactant with a hydrophile of dendritic polyethylenimine (C(12)(EI)(7)) was synthesized by a cationic polymerization of dodecylamine with aziridine and was used as a stabilizer to prepare Pt colloid, which is then used in situ to prepare carbon-supported Pt nanoparticles. The effects of supporting carbon, surfactant concentration, and calcination time on the nanoparticle size and catalytic performance were determined from the transmission electron microscopic analyses and cyclic voltammograms. In the presence of carbon, the Pt particle size increased slightly with lower C(12)(EI)(7) content, while those with higher C(12)(EI)(7) concentrations remained unchanged. For the heat-treated Pt/C catalyst, the molar ratio of C(12)(EI)(7) to H(2)PtCl(6) ([N]/[Pt] ratio) dominated the growth of Pt nanoparticles. The size decreased from 7.6 nm for a [N]/[Pt] ratio of 5 to 3.8 nm for a [N]/[Pt] ratio of 40. X-ray photoelectron spectroscopy revealed that metallic Pt(0) (81.6%) predominated the Pt species in the heat-treated catalyst, which is more than the commercial E-TEK catalyst. The data show clearly that thermal treatment had successively removed the stabilizing shells; moreover, it did not cause serious aggregation of particles in the presence of C(12)(EI)(7) and thus enhanced the catalytic activity. The interaction between Pt and C(12)(EI)(7) were studied and were explained in terms of a mechanism of dual-functional stabilization both on carbon and in the thermal treatment.  相似文献   

12.
In this study, a γ-ray irradiation approach without addition of any commonly used reducing chemicals has been explored to synthesize carbon-supported high Pt loading (i.e., 80 wt.%) cathode catalyst for direct methanol fuel cell. Compared with the Pt catalyst prepared by impregnation-NaBH4 reduction approach, the supported Pt catalyst synthesized by γ-ray irradiation has better dispersion of Pt nanoparticles on the carbon support with smaller particle size and narrower size distribution and has demonstrated enhanced catalytic activity toward oxygen reduction reaction and improved fuel cell performance.  相似文献   

13.
四苯基钴卟啉;pt催化剂;直接甲醇燃料电池;氧还原  相似文献   

14.
N-doped graphene has been extensively explored because of their intriguing properties. However, most of the conventional heat-processed N-doped graphene (HNG) suffer from the poor hydrophilic property and low electric conductivity when using electrode materials. Herein, we present a facile solution-processed strategy to fabricate N-doped graphene through electrochemical exfoliation of graphite in inorganic electrolyte solution. The resulting electrochemically exfoliated N-doped graphene (ENG) has high level of nitrogen (7.9 at.%) and oxygen (16.5 at.%), moreover, excellent electric conductivity (19 s cm?1). As a binder-free electrode material for oxygen reduction reaction (ORR), ENG exhibits much better electroactivity than HNG and electrochemically exfoliated graphene (EG), moreover, much better methanol tolerance and long-term durability than that commercial Pt/C catalyst. The results provide new sights into scalable production of noble metal-free catalyst towards ORR.  相似文献   

15.
The contribution of carbon functional groups (CFG) to methanol oxidation at carbon-supported Pt catalysts is studied in this work. Platinum black, attached in a form of a thin layer to electrochemically treated glassy carbon (GC), is investigated as a model system. Impedance measurements reveal significant changes in capacitive response of GC anodically polarized in H2SO4 solution in comparison to unoxidized state. XPS analyses show the increased fraction of oxygen-containing CFGs upon electrochemical treatment of GC. The activity of Pt black attached to oxidized GC for methanol oxidation is more than two times larger in comparison to the catalyst attached to unoxidized GC. Increased activity is most likely due to the promotion of COads removal by increased content of CFGs.  相似文献   

16.
Ultra-low Pt content PEMFC electrodes have been manufactured using magnetron co-sputtering of carbon and platinum on a commercial E-Tek® uncatalyzed gas diffusion layer in plasma fuel cell deposition devices. Pt loadings of 0.16 and 0.01 mg cm?2 have been realized. The Pt catalyst is dispersed as small clusters with size less than 2 nm over a depth of 500 nm. PEMFC test with symmetric electrodes loaded with 10 μg cm?2 led to maximum reproducible power densities as high as 0.4 and 0.17 W cm?2 with Nafion®212 and Nafion®115 membranes, respectively.  相似文献   

17.
应用湿化学法制备RuO2/C纳米复合物,并以其为载体借助微波法制备成Pt/RuO2/C催化剂.使用透射电镜和X射线衍射分析RuO2/C载体、Pt/RuO2/C催化剂的形貌及晶体结构;循环伏安、稳态阳极腐蚀和旋转圆盘电极等测试电化学性能.结果表明,Pt/RuO2/C催化剂具有良好的耐甲醇渗透性和稳定性,可有效延长催化剂的使用寿命.本文为探索新型高性能DMFC阴极催化剂之制备提供了一条较好的途径.  相似文献   

18.
In this paper, we report the use of binary carbon supports (carbon nanotubes (CNTs) and active carbon) as a catalyst layer for fabricating gas diffusion electrodes. The electrocatalytic properties for the oxygen reduction reaction (ORR) were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in an alkaline electrolyte. The binary-support electrode exhibits better performance than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and active carbon is 50:50. The results from the electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity, and fast ORR kinetics. Furthermore, the effect of CNT support on the electrocatalytic properties of Pt nanoparticles for binary-support electrodes was also investigated by different loading-reduction methods. The electrocatalytic activity of the binary-support electrodes is improved dramatically by Pt loading on CNT carbon support, even at very low Pt loading. Additionally, the EIS analysis results indicate that the process of ORR may be controlled by diffusion of oxygen in the electrode thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

19.
采用一种简单方法制备具有优异氧还原反应(ORR)活性的、无金属的氮掺杂碳材料.以双氰胺(DCD)为氮源,蔗糖、β-环糊精和壳聚糖为不同的碳源,通过简单的热解法制备出氮掺杂的类石墨烯纳米片催化剂CN-nanosh(suc)、CN-nanosh(cyc)和CN-nanosh(ch).这些催化剂在碱性溶液中表现出优异的ORR...  相似文献   

20.
吕艳卓  徐岩  陆天虹  邢巍  张密林 《化学学报》2007,65(16):1583-1587
直接甲醇燃料电池(DMFC)由于具有较多的优点而受到广泛的关注. 但是碳载Pt (Pt/C)阳极催化剂电催化活性低是限制其应用的一个主要问题. 为了提高Pt/C催化剂对甲醇氧化的电催化性能, 分别用CO2, 空气, H2O2或HNO3对常用作为载体的Vulcan XC-72碳黑进行预处理. 结果表明, 在用CO2, 空气, HNO3, H2O2处理的及未处理的碳黑作载体制得的Pt/C催化剂电极上, 甲醇氧化峰的峰电流密度顺序为39, 33, 32, 20和18 mA•cm-2, 表明用CO2处理的碳载体制备的Pt/C催化剂对甲醇氧化有最好的电催化活性和稳定性. 其主要原因是用CO2处理能减少碳黑表面的含氧基团和增加石墨化程度, 而使碳黑的电阻降低及Pt粒子在碳黑上的分散性变好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号