首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A field test was conducted to determine the ability of three plant species to extract 137Cs and 90Sr from contaminated soil. Redroot pigweed (Amaranthus retroflexus L.), Indian mustard [Brassica juncea (L.) Czern.], and tepary bean (Phaseolus acutifolius A. Gray) were planted in a series of spatially randomized cells in soil that was contaminated in the 1950s and 1960s. We examined the potential for phytoextraction of 90Sr and 137Cs by these three species. Concentration ratios (CR) for 137Cs for redroot pigweed, Indian mustard, and tepary bean were 2.58, 0.46, and 0.17, respectively. For 90Sr they were substantially higher: 6.5, 8.2, and 15.2, respectively. The greatest accumulation of both radionuclides was obtained with redroot pigweed, even though its CR for 90Sr was the lowest, because of its relatively large biomass. There was a linear relationship between the 137Cs concentration in plants and its concentration in soil only for redroot pigweed. Uptake of 90Sr exhibits no relationship to 90Sr concentrations in the soil. Estimates of time required for removal of 50% of the two contaminants, assuming two crops of redroot pigweed per year, are 7 yr for 90Sr and 18 yr for 137Cs.  相似文献   

2.
90Sr、137Cs在某种包气带土壤中的迁移研究   总被引:4,自引:0,他引:4  
杨勇  苑国琪  张东 《四川环境》2004,23(3):85-89
本文叙述了放射性废物中具有代表性的裂变核素^90Sr、^137Cs在某种包气带土壤中的迁移情况研究。使用小型土柱的氚水淋洗实验研究土壤水力学性质,最后进行大型土柱实验研究核素在该包气带土壤中的迁移,并对实验情况进行了数学模拟。用该土壤原状土进行小型土柱的氚水淋洗试验,测得了土壤的水力弥散度为0.32cm,土壤有效孔隙度为0.35。经过290天的大型柱迁移试验表明,土壤对^90Sr的阻滞系数为220.4,在模拟实际降雨量的情况下,^90Sr的平均迁移速度为0.63cm/y,^137Cs在大型柱试验中没有明显迁移。数值模拟^90Sr、^137Cs迁移,得出经过上述大型柱试验相同的条件下,^90Sr、^137Cs迁移的峰位置基本和大型柱试验结果相同。  相似文献   

3.
李全伟  苑国琪  张东  李帆 《四川环境》2006,25(6):23-25,31
聚合物水泥用于放射性废离子交换树脂水泥固化工艺,利用其防水性能抑制废树脂的溶胀,降低水泥固化体中放射性核素^137Cs、^90Sr浸出率,提高了废树脂包容率和处置的安全性。  相似文献   

4.
Twenty years after the Chernobyl accident, root uptake from the surface layers of contaminated forest soils plays a major role in radiocaesium ((137)Cs) transfer to the trees and accumulation in perennial compartments, including stemwood. Trustworthy long-term predictions (modelling) of stemwood contamination with (137)Cs should accordingly be based on a reliable picture of this source-sink relationship. Considering the complexity of the processes involved in (137)Cs cycling in forest stands, elementary ratios like transfer factors (TF) were shown to be not very relevant for that purpose. At the tree level, alternatives like the wood immobilisation potential (WIP) have therefore been proposed in order to quantify the current net (137)Cs accumulation in stemwood. Our objective was here to compare WIP values determined for a series of contaminated forest stands in Belarus with the corresponding pools of (137)Cs available in the soil for root uptake. The comparison reveals that both indices are quite proportional, whatever the forest ecosystem features. This corroborates the relevancy of WIP as an indicator of the current (137)Cs root uptake by the trees, which could accordingly help to improve the existing models of (137)Cs cycling and the long-term management of contaminated forest ecosystems.  相似文献   

5.
Phytoextraction field experiments were conducted on soil contaminated with 0.39 to 8.7 Bq/g of 137Cs to determine the capacity of five plant species to accumulate 137Cs and the effects of three soil treatments on uptake. The plants tested were redroot pigweed (Amaranthus retroflexus L. var. aureus); a mixture of redroot pigweed and spreading pigweed (A. graecizans L.); purple amaranth (A. cruteus L.) x Powell's amaranth (A. powellii S. Watson), referred to here as the amaranth hybrid; Indian mustard [Brassica juncea (L.) Czern.]; and cabbage (Brassica oleracea L. var. capitata). For control plants, the concentration ratios (CR) of 137Cs were greatest for redroot pigweed and the amaranth hybrid, with average CR values of 1.0 +/- 0.24 and 0.95 +/- 0.14, respectively. The lowest value was for Indian mustard at 0.36 +/- 0.10. The soil treatments included (i) application of NH4NO3 solution to the soil after plants had matured, (ii) addition of composted manure to increase organic matter content of the soil, (iii) combination of the manure and ammonium solution treatments, and (iv) controls. The ammonium solution gave little overall increase in accumulation of 137Cs. The use of composted manure also had little influence, but the combination of the composted manure with application of ammonium solutions had a distinctly negative effect on plant uptake of 137Cs. On average the fraction of 137Cs taken up from the soil was reduced by 57.4 +/- 1.2% compared with controls. This was the result of release of competing ions, primarily Ca, from the manure and was observed across all five plant species tested. The application of ammonium solution took place in the last two weeks before harvest. The reduction of plant 137Cs content, by addition of the ammonium solution, as it interacted with the manure, indicates that substantial quantities 137Cs can be released from the shoots of plants as a result of sudden changes in soil solution chemistry.  相似文献   

6.
The understanding of the processes that control the behavior of radionuclides in crops can support policymakers to take actions to protect the environment and safeguard human health. Data concerning the behavior of radionuclides in fruits are limited. Strawberry (Fragaria x ananassa Duchesne) plants were contaminated on the aboveground part by sprinkling an aqueous solution of 134Cs and 85Sr at three growing stages: predormancy, anthesis, and beginning of ripening. Intercepted activity was more affected by the posture and physical orientation of leaves rather than by leaf area or biomass. Fruit interception ranges from 0.2 to 1.2% of the sprinkled activity. Translocation coefficients from leaf to fruit are on the order of 10(-4) for 134Cs and 10(-5) for 85Sr. Translocation reaches its highest intensity between anthesis and ripening. If deposition occurs when plants are bearing fruits, the fruit activity will be affected by the activity initially deposited on the fruit surfaces. This is important for 85Sr as it is not translocated in the phloem. The loss of the dead leaves at the resumption of growth causes high plant decontamination, but a fraction of both radionuclides remains in the storage organs, roots, and shoots, which is retranslocated to fruits in the following spring. The values of the environmental half-time, t(w), after deposition at predormancy are 114 d for 134Cs and 109 d for 85Sr. Cesium-134 tends to be allocated to fruits, while 85Sr remains in leaves and crowns. Translocation of radionuclides to roots results in soil contamination.  相似文献   

7.
Batch and dynamic leaching methods were used to evaluate the effectiveness of hydroxyapatite (HA), illite, and zeolite, alone and in combination, as soil additives for reducing the migration of cesium-137 (137Cs+) and uranium (U) from contaminated sediments. Amendment treatments ranging from 0 to 50 g kg(-1) were added to the sediment and equilibrated in 0.001 M CaCl2. After equilibration, the treatment supernatants were analyzed for 137Cs+, U, PO4, and other metals. The residual sediments were then extracted overnight using one of the following: 1.0 M NH4Cl, 0.5 M CaCl2, or the Toxicity Characteristic Leaching Procedure (TCLP) extractant. Cesium was strongly sorbed to the contaminated sediments, presumably due to interlayer fixation within native illitic clays. In fact, 137Cs+ was below detection limits in the initial equilibration solutions, the CaCl2 extract, and the TCLP solution, regardless of amendment. Extractants selective for interlayer cations (1.0 M NH4Cl) were necessary to extract measurable levels of 137Cs+. Addition of illitic clays further reduced Cs+ extractability, even when subjected to the aggressive extractants. Zeolite, however, was ineffective in reducing Cs+ mobility when subjected to the aggressive extractants. Hydroxyapatite was less effective than illite at reducing NH4+-extractable Cs+. Hydroxyapatite, and mixtures of HA with illite or zeolite, were highly effective in reducing U extractability in both batch and leaching tests. Uranium immobilization by HA was rapid with similar final U concentrations observed for equilibration times ranging from 1 h to 30 d. The current results demonstrate the effectiveness of soil amendments in reducing the mobility of U and Cs+, which makes in-place immobilization an effective remediation alternative.  相似文献   

8.
137Cs activities in mosses and substrate (soil, bark) collected from W. Macedonia, Greece were measured 20 years after the Chernobyl reactor accident. Archive material from previous studies was also used for comparison and diachronic estimation of the radio-contamination status. A gradual decrease was detected which depended on various factors such as the collected species, location, growth rate and substrate. Maximum accumulation capacity of 137Cs was observed in the epilithic mosses in comparison to the epiphytic ones. The 137Cs content in the bark of the two broad-leaved species (oak and fagus) was higher than that of the conifer (pinus). Bark specimens of about 50 cm height were in general more contaminated than those of 200 cm. Autoradiography revealed an amount of 137Cs distributed more or less uniformly in moss thalli. The high 137Cs activities found in mosses 20 years after Chernobyl suggest that these primitive plants are effective, suitable and inexpensive biological detectors of the distribution and burden of radionuclide fallout pattern.  相似文献   

9.
Surface contamination by bomb-derived and Chernobyl-derived 137Cs has been subject to changes due to physical decay and lateral transport of contaminated soil particles, which have resulted in an on-going transfer of radionuclides from terrestrial ecosystems to surface water, river bed sediments, and flood plains. Knowledge of the different sources of spatial variation of 137Cs is particularly essential for estimating 137Cs transfer to fluvial systems and for successfully applying 137Cs as an environmental tracer in soil erosion studies. This study combined a straightforward sediment redistribution model and geostatistical interpolation of point samples of 137Cs activities in soil to distinguish the effects of sediment erosion and deposition from other sources of variation in 137Cs in the small Mochovce catchment in Slovakia. These other sources of variation could then be interpreted. Besides erosion and deposition processes, the initial pattern of 137Cs deposition, floodplain sedimentation, and short-range spatial variation were identified as the major sources of spatial variation of the 137Cs inventory.  相似文献   

10.
Chromophoric dissolved organic matter (CDOM) leached from leaf litter is a major source of humus in mineral soil of forest ecosystems. While their functions and refractoriness depend on the physicochemical structure, there is little information on the quality of CDOM, especially for that leached in the very early stages of litter decomposition when a large amount of dissolved organic matter (DOM) is leached. This study aimed to better understand the variations/changes in the composition of CDOM leached from senescent leaf litter from two tree species during the early stage of decomposition. Leaf litter from a conifer tree (Japanese cedar, D. Don) and a deciduous broad-leaved tree (Konara oak, Thunb.) were incubated in columns using simulated rainfall events periodically for a total of 300 d at 20°C. The quality of CDOM was investigated based on the fluorescence properties by using a combination of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC). In addition, the phenolic composition of DOM was investigated at a molecular level by thermally assisted hydrolysis and methylation-gas chromatography-mass spectrometry (THM-GC-MS) in the presence of tetramethylammonium hydroxide (TMAH). The EEM was statistically decomposed into eight fluorescence components (two tannin/peptide-like peaks, one protein-like peak, and five humic-like peaks). A significant contribution of tannin/peptide-like peaks was observed at the beginning of incubation, but these peaks decreased quickly and humic-like peaks increased within 1 mo of incubation. The composition of humic-like peaks was different between tree species and changed over the incubation period. Since tannin-derived phenolic compounds were detected in the DOM collected after 254 d of incubation on THM-GC-MS, it was suggested that tannins partially changed its structure, forming various humic-like peaks during the early decomposition.  相似文献   

11.
Recognition of the threat to the sustainable use of the earth's resources posed by soil erosion and associated off-site sedimentation has generated an increasing need for reliable information on global rates of soil loss. Existing methods of assessing rates of soil loss across large areas possess many limitations and there is a need to explore alternative approaches to characterizing land surface erosion at the regional and global scale. The downcore profiles of 137Cs activity available for numerous lakes and reservoirs located in different areas of the world can be used to provide information on land surface erosion within the upstream catchments. The rate of decline of 137Cs activity toward the surface of the sediment deposited in a lake or reservoir can be used to estimate the rate of surface lowering associated with eroding areas within the upstream catchment, and the concentration of 137Cs in recently deposited sediment provides a basis for estimating the relative importance of surface and channel, gully, and/or subsurface erosion as a source of the deposited sediment. The approach has been tested using 137Cs data from several lakes and reservoirs in southern England and China, spanning a wide range of specific suspended sediment yield. The results obtained are consistent with other independent evidence of erosion rates and sediment sources within the lake and reservoir catchments and confirm the validity of the overall approach. The approach appears to offer valuable potential for characterizing land surface erosion, particularly in terms of its ability to provide information on the rate of surface lowering associated with the eroding areas, rather than an average rate of lowering for the entire catchment surface.  相似文献   

12.
Soil cores and suspended sediments were collected within the Old Woman Creek, Ohio (OWC) watershed following a thunderstorm and analyzed for 7Be, 137Cs, and 210Pb activities to compare the effects of till vs. no-till management on soil erosion and sediment yield. The upper reaches of the watershed draining tilled agricultural fields were disproportionately responsible for the majority of the suspended sediment load compared with lower in the watershed (2.0-7.0 metric tons/km2 [Mg/km2] vs. 1.2-2.6 Mg/km2). About 6 to 10 times more sediment was derived from the subbasins that are predominantly tilled (6.8-12.4 Mg/km2) compared with the subbasins undergoing no-till practices (0.5-1.1 Mg/km2). In undisturbed soils the 210Pb activities decreased with movement toward the bottom of the cores to the constant supported 210Pb value at a depth of about 10 cm. There was a subsurface maximum in 137Cs activity within the top 10 cm. In contrast, the 210Pb and 137Cs distributions in soils that are currently or were previously tilled were nearly homogeneous with depth, reflecting continuing or previous mixing by plowing. The activities of 210Pb and 7Be were linearly correlated and were higher in suspended sediments derived from no-till subbasins than those derived from tilled subbasins, indicating that the soil surface is the source of suspended sediment. This study demonstrates that no-till farming results in decreases in soil erosion and decreases in suspended sediment discharges and that those eroded sediments have a radionuclide signature corresponding to the tillage practice and the depth of erosion.  相似文献   

13.
For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.  相似文献   

14.
15.
This paper summarizes the vertical distributions of 22Na, 137Cs, and 60Co above controlled water tables in deep and shallow lysimeters during a four-year experiment. The activity concentration profiles were all determined at the time of harvest of a winter wheat (Triticum aestivum L. cv. Pastiche) crop. Activity concentrations in different crop tissues were determined and crop uptake expressed as both an inventory ratio (IR) and a transfer factor (TFw), weighted to account for root and radionuclide distributions within the soil profile. Experimental variates were subjected to analysis of variance to determine the single and combined effects of the soil depth and the year of the experiment on the results obtained. Each radionuclide showed significant variations in activity concentration with soil depth, but the significance of these variations from year to year was dependent on radionuclide. A distinction in the behavior of weakly sorbed (22Na) and more highly sorbed (137Cs and 60Co) radionuclides was observed. The former exhibited significant variations in its distribution in the soil profile from year-to-year whereas the latter did not. Relatively high TF, values for 22Na were maintained throughout the experiment, whereas for 137Cs and 60Co, the highest TFw values were recorded in 1990 followed by a significant decline in 1991, with TFw remaining low in 1992 and 1993. The TFw values were, in general, significantly higher for deep lysimeters than for shallow lysimeters. This is thought to provide evidence of enhanced radionuclide absorption by the relatively small fraction of roots in the vicinity of the deeper water table.  相似文献   

16.
The aging of soil-pollutant interaction, which may lead to an increase in pollutant fixation, is the main driving force in the natural attenuation of contaminated soils. Here a test was evaluated to predict the aging of radiostrontium and radiocesium in soils from the Chernobyl and Mediterranean areas. After contamination, soils were maintained at various temperatures for up to 12 mo, with or without drying-wetting (DW) cycles. Changes in the quantity of radionuclide reversibly sorbed over time were monitored using an extraction test (1 mol L(-1) NH(4)Cl; 10 mL g(-1); 16 h). The fixed fraction could not be predicted from soil properties controlling the sorption step. Aging was not as relevant for Sr as for Cs. The time elapsed since contamination was the main factor responsible for the slight (up to 1.3-fold) decreases in Sr extraction yields. The additional effect of DW cycles was negligible. Instead, all factors accelerated Cs aging due to the enhancement of Cs trapping by clay interlayer collapse, with up to 20-fold increases in Cs fixation. The DW cycles also caused secondary effects on the Cs-specific sorption pool, which were beneficial or detrimental depending on the soil type. Extraction yields from laboratory aged samples agreed with those from field samples taken a few years after the Chernobyl accident. These results confirm the prediction capacity of the laboratory test and its usefulness in risk assessment exercises and in the design of intervention actions, particularly because neither fixation nor aging were related to the soil properties, such as clay content.  相似文献   

17.
本文对U,K,^137Cs,^90Sr等几种核素在土壤-水稻,土壤-茶叶,土壤-蔬菜之间以及水-鱼间的转移情况进行了研究;并考虑到这些核素含量较高的食品(如茶叶、黄豆)不直接全部食入人体,因此,根据人们的饮茶习惯及豆制品(水豆腐)的加工过程进行模拟,对其向人体转移的参数进行了实验研究。由上述实验结果给出了转移参数及相关方程。  相似文献   

18.
There is increasing awareness of the damage caused to valuable and often unique sensitive habitats by people pressure as degradation causes a loss of plant species, disturbance to wildlife, on-site and off-site impacts of soil movement and loss, and visual destruction of pristine environments. This research developed a new perspective on the problem of recreational induced environmental degradation by assessing the physical aspects of soil erosion using the fallout radionuclide caesium-137 (137Cs). Temporal sampling problems have not successfully been overcome by traditional research methods monitoring footpath erosion and, to date, the 137Cs technique has not been used to estimate longer-term soil erosion in regard to sensitive recreational habitats. The research was based on-sites within Dartmoor National Park (DNP) and the South West Coast Path (SWCP) in south-west England. 137Cs inventories were reduced on the paths relative to the reference inventory (control), indicating loss of soil from the path areas. The Profile Distribution Model estimated longer-term erosion rates (ca. 40 years) based on the 137Cs data and showed that the combined mean soil loss for all the sites on ‘paths’ was 1.41 kg m?2 yr?1 whereas the combined ‘off path’ soil loss was 0.79 kg m?2 yr?1, where natural (non-recreational) soil redistribution processes occur. Recreational pressure was shown to increase erosion in the long-term, as greater soil erosion occurred on the paths, especially where there was higher visitor pressure.  相似文献   

19.
Of the natural processes that concentrate dispersed environmental contaminants, landscape fire stands out as having potential to rapidly concentrate contaminants and accelerate their redistribution. This study used rainfall simulation methods to quantify changes in concentration of a widely dispersed environmental contaminant (global fallout 137Cs) in soils and surface water runoff following a major forest fire at Los Alamos, New Mexico, USA. The 137Cs concentrations at the ground surface increased up to 40 times higher in ash deposits and three times higher for the topmost 50 mm of soil compared with pre-fire soils. Average redistribution rates were about one order of magnitude greater for burned plots, 5.96 KBq ha(-1) mm(-1) rainfall, compared with unburned plots, 0.55 KBq ha(-1) mm(-1) rainfall. The greatest surface water transport of 137Cs, 11.6 KBq ha(-1) mm(-1), occurred at the plot with the greatest amount of ground cover removal (80% bare soil) following fire. Concentration increases of 137Cs occurred during surface water erosion, resulting in enrichment of 137Cs levels in sediments by factors of 1.4 to 2.9 compared with parent soils. The elevated concentrations in runoff declined rapidly with time and cumulative precipitation occurrence and approached pre-fire levels after approximately 240 mm of rainfall. Our results provide evidence of order-of-magnitude concentration increases of a fallout radionuclide as a result of forest fire and rapid transport of radionuclides following fire that may have important implications for a wide range of geophysical, ecosystem, fire management, and risk-based issues.  相似文献   

20.
Thirty-eight different milk and milk powder samples from Tehran-Iran were collected and analyzed for 90Sr activity using a method in which the daughter product of 90Sr decay (90Y) was extracted by tributyl phosphate from ashed milk. 90Y was then back extracted with water, and oxalate was precipitated . Following the sample analyzing, beta counting was performed with an ultralow-level liquid scintillation spectrometer. The quality control and assurance of the method were obtained by standard samples prepared with an IAEA-certified reference material. The mean determined 90Sr activity concentration in the analyzed milk and milk powder (0.225 ± 0.042 and 0.216 ± 0.024 Bq kg−1, respectively) showed that the radioactivity concentration in our samples was too low to induce biological hazards. These data can provide useful information of the background level of contamination, which in turn can be used in the following environmental monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号