首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agglomeration of CoB catalysts is a severe problem in hydrogen generation from NaBH4 hydrolysis. Herein, highly dispersed carbon nanofiber immobilized CoB catalysts (CoB/CN) were synthesized by a combined prereduction and carbonization method, which is used in hydrogen generation from NaBH4 hydrolysis. Morphological evolution of carbon nanofibers, phase structure and elemental distribution of CoB/CN catalysts are explored by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Compared to Co/carbon nanofiber catalysts (Co/CN) without prereduction, CoB/CN catalysts can afford higher CoB dispersity and specific surface area because the migration rate of cobalt species during carbonization is effectively retarded by prereduction. Hence the agglomeration of magnetic CoB nanoparticles can be effectively inhibited. The hydrogen generation experiment shows that CoB/CN catalysts process higher catalytic activity and lower activation energy than Co/CN.  相似文献   

2.
Herein, the CoB catalyst supported on the sepiolite clay treated with phosphoric acid was utilized to produce hydrogen from the NaBH4 hydrolysis. In order to analyse the performance of the phosphoric acid treated sepiolite clay supported-CoB catalyst, the NaBH4 concentration effect, phosphoric acid concentration effect, phosphoric acid impregnation time effect, CoB catalyst percentage effect, and temperature effect were studied. In addition, XRD, XPS, SEM, TEM, BET, and FTIR analysis were performed for characterization of Co–B catalyst supported on the acid-treated sepiolite. The completion time of this hydrolysis reaction with Co–B (20%) catalyst supported on the sepiolite treated by 5 M phosphoric acid was approximately 80 min, whereas the completion time of this hydrolysis reaction with acid-free sepiolite-supported Co–B (20%) catalyst was approximately 260 min. There is a five-fold increase in the maximum production rate. The maximum hydrogen production rates of this hydrolysis reaction at 30 and 60 °C were found as 1486 and 5025 ml min−1g−1catalyst, respectively. Activation energy was found as 21.4 kJ/mol. This result indicates that the acid treatment on sepiolite is quite successful. The re-usability of NaBH4 hydrolysis reaction by CoB catalyst supported on sepiolite treated phosphoric acid for successive five cycles of NaBH4 at 30 °C was investigated.  相似文献   

3.
Sodium borohydride has attracted much attention because of its high hydrogen density, low hydrolysis temperature and safety. However, most of the current catalysts are expensive and their performances are easily attenuated. Therefore, the development of new catalysts with excellent performances and low cost is the key to its application. In this work, a novel dandelion-like CoMoNi–B/ZIF-67 catalyst with excellent performance was prepared by chemical reduction at room temperature, wherein the CoMoNi–B amorphous alloy was evenly wrapped on the ZIF-67 carrier through liquid phase reduction to form a dandelion-like composite catalyst, of which the “flower bud” ZIF-67 carrier is about 500 nm, and the “crown” flocculent amorphous alloy is about 400 nm. The as-synthesized CoMoNi–B/ZIF-67 has a dandelion-like structure, uniform distribution, large specific surface area, and exhibits an excellent catalytic activity with an apparent activation energy of 35.01 kJ/mol calculated by the Arrhenius equation. Its catalytic hydrolysis rate for sodium borohydride reaches up to 6277 (mL H2 min/g Co and Ni) at 25 °C. Compared with traditional precious metal catalysts, this novel dandelion-like CoMoNi–B/ZIF-67 catalyst has simple preparation, low cost, and easy availability of raw materials, has great potential application for hydrogen generation in NaBH4 hydrolysis.  相似文献   

4.
The aim of this work is to prepare CoB catalysts supported on raw bentonite (CoB/bentonite) and Na-exchanged bentonite (CoB/Na-bentonite) by the impregnation and chemical reduction method. The prepared catalysts were characterized using X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The activities of the catalysts were tested in the hydrolysis reaction of sodium borohydride (NaBH4) in a semi-batch system. The volume of the evolved hydrogen gas was determined by a water displacement method. The effects of catalyst amount, NaOH (a base stabilizer) concentration, NaBH4 concentration and solution temperature on the hydrogen generation rate were investigated. The maximum hydrogen generation rates were determined as 921.94 mL/min.gcat for CoB/bentonite and 1601.45 mL/min.gcat for CoB/Na-bentonite when the 5 wt % NaBH4 and 10 wt % NaOH solutions were used at 50 °C. The activation energies (Ea) of the hydrolysis reaction over CoB/bentonite and CoB/Na-bentonite were determined as 55.76 and 56.61 kJ/mol, respectively.  相似文献   

5.
Generation of hydrogen by hydrolysis of alkali metal hydrides has attracted attention. Unsupported CoB catalyst demonstrated high activity for the catalytic hydrolysis of NaBH4 solution. However, unsupported CoB nanoparticles were easy to aggregate and difficult to reuse. To overcome these drawbacks, CoB/SiO2 was prepared and tested for this reaction. Cobalt (II) acetate precursor was loaded onto the SiO2 support by incipient-wetness impregnation method. After drying at 100 °C, Co cations were deposited on the support. The dried sample was then dispersed in methanol/water solution and then fully reduced by NaBH4 at room temperature. The catalyst was characterized by N2 sorption, XRD and XPS. The results indicated that the CoB on SiO2 possessed amorphous structure. B and Co existed both in elemental and oxidized states. SiO2 not only affected the surface compositions of CoB, but also affected the electronic states of Co and B. B0 could donate partial electron to Co0. The structure effect caused by the SiO2 support helped to prevent CoB nanocluster from aggregation and therefore the activity increased significantly on hydrolysis of alkaline NaBH4 solution. The CoB/SiO2 catalyst showed much higher activity than the unsupported CoB catalyst. At 298 K, the hydrogen generation rate on CoB/SiO2 catalyst was 4 times more than that on the unsupported CoB catalyst. The hydrogen generation rate was as high as 10,586 mL min−1 g−1 catalyst at 298 K. CoB/SiO2 is a very promising catalyst for this reaction.  相似文献   

6.
In this work, a series of shaped CoB/Ni-foam catalysts were directly synthesized by using a convenient and simple electroless plating method. Despite the low loading amount of CoB, the catalysts showed high catalytic performance in the hydrolysis of NaBH4 solution, and the maximum hydrogen generation rate reached 1930 mL min?1 (g CoB)?1 in 1 wt % NaBH4 + 5 wt % NaOH solution at 293 K. The catalysts demonstrated distinct stability, and the hydrogen generation rate was almost unchanged after 6 cycles. Furthermore, the catalysts could be easily recovered from the reaction system by a magnet. These characteristics make CoB/Ni-foam a high performance and cost effective catalyst for practical applications of hydrogen generation.  相似文献   

7.
Spirulina platensis is defined as the dried biomass of cyanobacteria in commercial use and is biomass with high carbon content. Spirulina platensis microalgae strain supported-CoB catalysts to produce hydrogen from sodium borohydride (NaBH4) were prepared for the first time. The Spirulina platensis microalgae strain was modified with phosphoric acid (H3PO4) to proton. Then, the supported catalyst was performed to produce hydrogen from NaBH4 hydrolysis. The optimum H3PO4 concentration, optimum Co amount, and optimum impregnation time of the H3PO4 with the microalgae strain were investigated. The maximum hydrogen production rate for the 30% CoB catalyst supported on microalgae strain treated with H3PO4 was found to be 3940 mL min−1g−1catalyst. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and scanning electron microscope (SEM) analysis were performed for characterization of CoB catalyst supported on Spirulina microalgae strain. After four consecutive uses, the performance and conversion values of this catalyst were investigated. At the same time, the effect of temperature on the hydrogen production from this hydrolysis reaction was examined. The activation energy with the CoB catalyst supported on Spirulina microalgae strain was calculated as 35.25 kJ mol−1. According to the kinetic model of a power law, n value was found as 0.25 for kinetic studies.  相似文献   

8.
Metal ion-imprinted (IIH) poly(2-acrylamido-2-methyl-1-propansulfonic acid) p(AMPS) hydrogels were prepared by using a free-radical polymerization technique in the presence of metal ions (M = Co (II) or Ni (II)). Using metal ion-imprinted hydrogels (IIHs), and non-metal ion-imprinted (NIH) hydrogels as template for the preparation of Co and Ni catalyst systems, the hydrolysis kinetics of NaBH4 and NH3BH3 were investigated. The catalytic performances of IIHs and NIHs were compared in terms of effect on hydrolysis kinetics of NaBH4 and NH3BH3. To increase the amounts of Co nanoparticles within p(AMPS) hydrogel for better catalytic activity, several reloading and reduction cycles of Co (II) ions were carried out, and the prepared p(AMPS)-Co composite catalyst systems were tested for hydrogen generation from the hydrolysis of NaBH4. As the number of Co (II) loading and reduction cycles increased, the amount of metal catalysts and the catalytic performance of composites increased. Kinetics studies were carried out on three times Co (II) ion loaded and reduced p(AMPS)-Co catalyst systems (containing 36.80 mg/g Co). Three time Co (II)-loaded catalyst systems provided very fast hydrolysis kinetics for NaBH4, and provided magnetic field responsive behavior. The hydrolysis reaction of NaBH4 was completed within 50 s, under the described conditions at 60 °C. It was demonstrated that the synthesized catalyst systems can be used ten times repetitively without significant loss of catalytic activity (86.5%).  相似文献   

9.
Effective Co/Cu, CoB/Cu, and CoBM (M = Mo,Zn,Fe)/Cu catalysts were prepared on the copper surface by a simple electroless deposition method using a morpholine borane as a reducing agent in the glycine solution. The activity of the deposited catalysts was investigated for hydrogen generation from an alkaline sodium borohydride solution. It was determined that these synthesized catalysts demonstrated the catalytic activity for the hydrolysis reaction of NaBH4. The lowest obtained activation energy (EA) of the hydrolysis reaction of NaBH4was 27 kJ mol?1 for the CoBMo/Cu catalyst. The hydrogen generation rate of 15.30 ml min?1 was achieved using CoBMo/Cu catalysts at 313 K and it increased ~3.5 times with the increase of temperature to 343 K. The highest hydrogen generation rate obtained by CoBMo/Cu films may be related to the hierarchical cauliflower-shaped 3D structures and the high roughness surface area. Moreover, the CoBMo/Cu catalyst showed an excellent reusability.  相似文献   

10.
In this study, montmorillonite (MMT) clay was modified with different acids to be used as support material. The modified MMT clay was used to obtain hydrogen in the hydrolysis reactions of NaBH4 (NaBH4-HR) as a support material for the Co–B and Co–Fe–B catalyst. During the activation of MMT clay, the effects of different acids, phosphoric acid (H3PO4) concentration, and impregnation time with H3PO4 were investigated. During the hydrogen generation from the NaBH4-HR, effects of Co loading, Fe loading, NaBH4 concentration, temperature and, catalyst durability were investigated. The maximum HGRs for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B treated with 5 M H3PO4 for 7 days were 1869 and 4536 mL/min/gcatalyst, respectively. The activation energies for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B catalyst samples were 49.5 and 38.90 kJ/mol.  相似文献   

11.
Hydrogen generation from sodium borohydride (NaBH4) hydrolysis in the presence of metal catalysts is a frequently used and encouraging method for hydrogen storage. Metal nanoparticle-supported catalysts are better recyclability and dispersion than unsupported metal catalysts. In this study, the synthesis and characterization of a polymer-supported catalyst for hydrogen generation using NaBH4 have been investigated. For the synthesis of polymeric material, first of all, kaolin (KLN) clay has been magnetically rendered by using the co-precipitation method (Fe3O4@KLN) and then coated with poly tannic acid (PTA@Fe3O4@KLN). Then, the catalyst loaded with cobalt (Co) nanoparticles have been obtained with the NaBH4 reduction method (Co@PTA@Fe3O4@KLN). The surface morphology and structural properties of the prepared catalysts have been determined using methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS) and vibrating sample magnetometer (VSM). The optimization of the most important variables (NaBH4 amount, NaOH amount, catalyst amount, and metal loading rate) affecting the hydrolysis of NaBH4 using the synthesized polymeric catalysts was carried out using response surface methodology (RSM). Depending on the evaluated parameters, the desired response was determined to be hydrogen production rate (HGR, mL/g min). HGR was 1540.4 mL/gcat. min. in the presence of the Co@PTA@Fe3O4@KLN at optimum points obtained via RSM (NaBH4 amount 0.34 M, NaOH amount 7.9 wt%, catalyst amount 3.84 mg/mL, and Co loading rate 6.1%). The reusability performance of the catalyst used in hydrolysis of NaBH4 was investigated under optimum conditions. It was concluded that the catalyst is quite stable.  相似文献   

12.
In this work, the performance of a hydrogen generation system with an electroless-deposited Co–P/Ni foam catalyst for NaBH4 hydrolysis was evaluated. The performance of a hydrogen generator using a combination of Co/γ-Al2O3 and Co–P/Ni foam catalysts was also evaluated in order to address the shortcomings with the individual catalysts. The generator had high conversion efficiency, fast response characteristics, and strong catalyst durability. Hydrogen generation tests were performed to investigate the effect of the composition of the NaBH4 solution on the hydrogen generation properties. The generator's conversion efficiency decreased with an increase in the amount of solute dissolved in NaBH4 solution because of the accumulation of precipitates on the catalyst, and NaOH concentration had a greater effect on the hydrogen generation properties than did NaBH4 concentration. According to these results, the hydrogen generation system with the Co–P/Ni foam catalyst is suitable as a hydrogen supplier for proton exchange membrane fuel cells owing to the strong durability and inexpensive cost of the catalyst.  相似文献   

13.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

14.
Amorphous Co-W-P catalysts, which were prepared on carbon cloth (CC) by electrodeposition, have been investigated as bifunctional non-noble catalysts for the hydrogen generation from alkaline NaBH4 solution and the reduction of 4-nitrophenol by NaBH4. Scanning electron microscopes (SEM), energy dispersive X-ray spectrometer (EDX), and X-ray diffraction (XRD) were used to characterize the Co-W-P/CC catalysts. The hydrogen generated catalytic properties of as-prepared catalysts with different content of P and the stability were investigated in the alkaline NaBH4 solution of 5 wt% NaBH4 and 2 wt% NaOH. The activation energy for hydrolysis of NaBH4 by the Co-W-P catalyst was also probed at different temperature, and the results show that the obtained Co-W-P/CC catalysts exhibit very low apparent active energy (Ea = 27.18 kJ mol?1). Finally, we detect the catalytic activity of Co-W-P/CC in the reduction of 4-nitrophenol for the first time, and it also presents outstanding catalytic capability with the apparent rate constant (kapp) of 11.91 × 10?3 s?1. These characteristics indicate that the Co-W-P/CC catalysts possess a potential application on both the sodium borohydride hydrolysis and reduction of 4-nitrophenol.  相似文献   

15.
In this work, different shapes (powder and spherical) of ruthenium-active carbon catalysts (Ru/C) were prepared by impregnation reduction method for hydrogen generation (HG) from the hydrolysis reaction of the alkaline NaBH4 solution. The effects of temperature, amount of catalysts, and concentration of NaOH and NaBH4 on the hydrolysis of NaBH4 solution were investigated with different shapes of Ru/C catalysts. The results show that the HG kinetics of NaBH4 solution with the powder Ru/C catalysts is completely different from that with the spherical Ru/C catalysts. The main reason is that both mass and heat transfer play important roles during the reaction with Ru/C catalysts. The HG overall kinetic rate equations for NaBH4 hydrolysis using the powder Ru/C catalysts and the spherical catalysts are described as r = A exp (−50740/RT) [catalyst]1.05 [NaOH]−0.13 [NaBH4]−0.25 and r = A exp (−52,120/RT) [catalyst]1.00 [NaOH]−0.21 [NaBH4]0.27 respectively.  相似文献   

16.
A mesoporous carbon‐confined cobalt (Co@C) catalyst was fabricated by pyrolysis of macroscale Co‐metal–organic framework (MOF) crystals and used to catalyze NaBH4 hydrolysis for hydrogen production. To reveal the structural changes of cobalt nanoparticles, we characterized the fresh and used Co@C catalysts using X‐ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and N2 adsorption. This MOF‐derived Co@C exhibits high and stable activity toward NaBH4 hydrolysis. No obvious agglomeration of Co nanoparticles occurred after five consecutive runs, implying good resistance of Co@C composite to metal aggregation. The kinetics of NaBH4 hydrolysis was experimentally studied by changing initial NaBH4 concentration, NaOH concentration, and catalyst dosage, respectively. It was found that the hydrogen generation rate follows a power law: r = A exp (?45.0/RT)[NaBH4]0.985[cat]1.169[NaOH]?0.451 .  相似文献   

17.
Graphene oxide (GO) modified Co–B catalysts for NaBH4 hydrolysis have been synthesized by the chemical reduction in this work. The structural features and catalytic performance of as-prepared samples have been investigated and discussed as a function of amounts of GO. According to structure characterization, the catalysts still retain the amorphous structure of Co–B alloy with the addition of GO, while GO exists as reduced GO (r-GO). The textural analysis and morphology observation indicate that the appropriate amount of GO in Co–B catalyst results in the obvious increase of specific surface area and uniform clustered morphology, which contributes to improve active surface area for catalytic reactions. The results of surface species characterization show that the electron density at active Co sites increases due to an electron transfer from B to Co facilitated by r-GO. It has been found that 50 mg GO modified Co–B catalyst exhibits especially high activity with a hydrogen generation rate of 14.34 L min−1·gcatalyst−1 and much lower activation energy of 26.2 kJ mol−1 for hydrolysis reaction of NaBH4. Meanwhile, the reusability evaluations show that the catalyst preserves high stability which can still maintain 81.5% of its initial activity after 5 catalytic cycles.  相似文献   

18.
Innovative metal boride nanocatalysts containing crystalline Co–Ni based binary/ternary boride phases were synthesized and used in the hydrolysis of NaBH4. All the as-prepared catalysts were in high-purity with average particle sizes ranging between ~51 and 94 nm and consisting of different crystalline phases (e.g. CoB, Co2B, Co5B16, NiB, Ni4B3, Ni2Co0·67B0.33). The synergetic effect of the different binary/ternary boride phases in the composite catalysts had a positive role on the catalytic performances thus, while the binary boride containing phases of unstable cobalt borides or single Ni4B3 were not showing any catalytic activity. The Co–Ni–B based catalyst containing crystalline phases of CoB–Ni4B3 exhibited the highest H2 production rate (500.0 mL H2 min?1 gcat?1), with an apparent activation energy of 32.7 kJ/mol. The recyclability evaluations showed that the catalyst provides stability even after the 5th cycle. The results suggested that the composite structures demonstrate favorable catalytic properties compared to those of their single components and they can be used as alternative and stable catalysts for efficient hydrogen production from sodium borohydride.  相似文献   

19.
Novel composites consisting of cobalt–boron (CoB) catalyst and sodium borohydride (NaBH4) implantation in polymers (polyethylene glycol (PEG) or sodium alginate) were prepared for portable hydrogen production. The CoB catalyst was synthesized by the reduction of cobalt salt in NaBH4 solution followed by heat treatment in nitrogen atmosphere. The catalyst was embedded in PEG gel or alginate beads and NaBH4 was directly added in PEG–dimethylformamide (DMF) gel and adsorbed in alginate beads. It is noted that the composites prepared are stable in dry air and can be easily used for hydrogen production. A rate of hydrogen production of 750 ml min−1 g−1 was reached when simply putting the composites into pure water. The humidified pure hydrogen can be used conveniently for fuel cells.  相似文献   

20.
Supported Co catalysts with different supports were prepared for hydrogen generation (HG) from catalytic hydrolysis of alkaline sodium borohydride solution. As a result, we found that a γ-Al2O3 supported Co catalyst was very effective because of its special structure. A maximum HG rate of 220 mL min−1 g−1 catalyst and approximately 100% efficiency at 303 K were achieved using a Co/γ-Al2O3 catalyst containing 9 wt.% Co. The catalyst has quick response and good durability to the hydrolysis of alkaline NaBH4 solution. It is feasible to use this catalyst in hydrogen generators with stabilized NaBH4 solutions to provide on-site hydrogen with desired rate for mobile applications, such as proton exchange membrane fuel cell (PEMFC) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号