首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the influence of ceramic thickness and curing unit on light transmission through leucite-reinforced material and polymerization of a dual-cured resin luting agent. Discs of Empress Esthetic (Ivoclar Vivadent) of 0.7-, 1.4- and 2-mm thickness were prepared. Variolink II (Ivoclar Vivadent) was placed in a 1-mm-thick cylindrical mold, and light-activated through ceramic for 40 s, using QTH or LED units. The samples were divided into dual, light, and chemically-polymerized control groups. Knoop hardness indentations were made on the top and bottom surfaces. Data were subjected to split-plot design three-way ANOVA and Tukey's test (P < 0.05). The light spectrum transmitted through ceramic was obtained using a spectrometer. Samples activated through 1.4-and 2-mm-thick discs showed lower hardness than all others groups, except for the chemical control group. Dual and light-polymerized control samples showed similar hardness to those activated through the 0.7-mm ceramic, whereas chemically polymerized control samples showed similar hardness to those activated through 1.4- and 2-mm ceramics. No significant differences in hardness were detected between the curing units or between the top and bottom layers. No significant alteration in the light spectrum profile was observed for both units, irrespective of the ceramic thickness.  相似文献   

2.
This study compared the ability of a variety of light sources and exposure modes to polymerize a dual-cured resin composite through ceramic discs of different thicknesses by depth of cure and Vickers microhardness (VHN). Ceramic specimens (360) (Empress 2 [Ivoclar Vivadent], color 300, diameter 4 mm, height 1 or 2 mm) were prepared and inserted into steel molds according to ISO 4049, after which a dual-cured composite resin luting material (Variolink II [Ivoclar Vivadent]) with and without self-curing catalyst was placed. The light curing units used were either a conventional halogen curing unit (Elipar TriLight [3M/ESPE] for 40 seconds), a high-power halogen curing unit (Astralis 10 [Ivoclar Vivadent] for 20 seconds), a plasma arc curing unit (Aurys [Degré K] for 10 seconds or 20 seconds) or different light emitting diode (LED) curing units (Elipar FreeLight I [3M/ESPE] for 40 seconds, Elipar FreeLight II [3M/ESPE] for 20 seconds, LuxOmax [Akeda] for 40 seconds, e-Light [GC] for 12 seconds or 40 seconds). Depth of cure under the ceramic discs was assessed according to ISO 4049, and VHN at 0.5 and 1.0 mm distance from the ceramic disc bottom was determined (ISO 6507-1). Medians and the 25th and 75th percentiles were determined for each group (n=10), and statistical analysis was performed using the Mann-Whitney-U-test (p < or = 0.05). The results showed that increasing ceramic disc thickness had a negative effect on the curing depth and hardness of all light curing units, with hardness decreasing dramatically under the 2-mm thick discs using LuxOmax, e-Light (12 seconds) or Aurys (10 seconds or 20 seconds). The use of a self-curing catalyst is recommended over the light-curable portion only, because it produced an equivalent or greater hardness and depth of cure with all light polymerization modes.  相似文献   

3.
This study evaluates the Knoop microhardness of resin composites cured with different light-emitting diode (LED) based light curing units (LCU) or with a conventional quartz-tungsten-halogen light (QTH). Ten experimental groups with 10 specimens each were used. The specimens were prepared by placing two light-cured resin composites with similar VITA shade A2-microhybrid Filtek Z250/3M ESPE and microfill Durafil VS/Heraeus Kulzer--in a 2.0 mm-thick disc shaped mold. The specimens were polymerized for 40 seconds with the use of one QTH LCU (Optilux 501/Kerr-Demetron) and four LED LCUs: Elipar FreeLight 1 Cordless LED (3M ESPE), Ultrablue II LED with cord (DMC), Ultrablue III LED cordless (DMC) and LEC 470 I (MM Optics). Knoop microhardness was determined at the top and bottom surfaces of the specimens 24 hours following curing. Microhardness values in the microhybrid resin composite group showed no statistically significant differences when cured with LED FreeLight 1 LCU and QTH LCU (p<0.05). The other LED devices evaluated in the study presented lower microhardness values in both surfaces (p<0.05) when compared to QTH. In the microfill resin composite group, no statistically significant differences were observed among all LCUs evaluated on the bottom surfaces (p<0.05). However, on the top surfaces, QTH presented the highest KHN values, and the LED devices presented similar results when compared with KHN values relative to each other (p<0.05).  相似文献   

4.
PURPOSE: To evaluate the Knoop hardness (KHN) of the resin cement Enforce activated by chemical/physical mode or physical mode solely; light-cured directly or through a 1.5 mm thick ceramic disc (HeraCeram) on shade DD2. MATERIALS AND METHODS: Light-curing was carried out using a conventional quartz tungsten halogen light (QTH) (XL2500) for 40 seconds at 700 mW/cm(2); light-emitting diodes (LED) (Ultrablue Is) for 40 seconds at 440 mW/cm(2); and Xenon plasma arc (PAC) (Apollo 95E) for 3 seconds at 1600 mW/cm(2). Bovine incisors had their buccal faces flattened and hybridized. A mold was seated on these surfaces and filled with cement. A disc of the acid-etched and silanized veneering material was seated over this set for light-curing. After dry storage (24 hours at 37 degrees C), specimens (n= 10) were sectioned for KHN measurements performed in a microhardness tester (50 gf load for 15 seconds). Data were submitted to ANOVA and Tukey's test (alpha= 0.05). RESULTS: The highest KHN values were obtained with LED, for both dual-cured and light-cured cement. The lowest KHN value was obtained with light-cured PAC. Light-curing with QTH resulted in hardness values similar to PAC in dual-cured groups. CONCLUSIONS: Light-curing through HeraCeram can influence resin cement hardness.  相似文献   

5.
The aim of this study was to assess Knoop hardness at different depths of a dual-cured self-adhesive resin cement through different thicknesses of Empress Esthetic? ceramic.Flattened bovine dentin was embedded in resin. The cement was inserted into a rubber mold (0.8 x 5 mm) that was placed between two polyvinyl chloride plastic films and placed over the flat dentin and light cured by Elipar Trilight-QTH (800 mW/cm2) or Ultra-Lumelight-emitting diode (LED 5; 1585 mW/cm2) over ceramic disks 1.4 or 2 mm thick. The specimens(n=6) were stored for 24 hours before Knoop hardness (KHN) was measured. The data were submitted to analysis of variance in a factorial split-plot design and Tukey's test (a=0.05).There was significant interaction among the study factors. In the groups cured by the QTHunit, an increase in ceramic thickness resulted in reduced cement hardness values at all depths, with the highest values always being found in the center (1.4 mm, 58.1; 2 mm, 50.1)and the lowest values at the bottom (1.4 mm,23.8; 2 mm, 20.2). When using the LED unit, the hardness values diminished with increased ceramic thickness only on the top (1.4 mm,51.5; 2 mm, 42.3). In the group with the 1.4-mm-thick disk, the LED curing unit resulted in similar values on the top (51.5) and center(51.9) and lower values on the bottom (24.2).However, when the cement was light cured through the 2-mm disk, the highest hardness value was obtained in the center (51.8), followed by the top (42.3) and bottom (19.9),results similar to those obtained with the QTH curing unit (center > top > bottom). The hardness values of the studied cement at different depths were dependent on the ceramic thickness but not on the light curing units used.  相似文献   

6.
The purpose of this study was to compare the thermal emission and curing efficiency of LED (LEDemetron 1, SDS/Kerr) and QTH (VIP, BISCO) curing lights at maximum output and similar power, power density and energy density using the same light guide. Also, another LED curing light (Allegro, Den-Mat) and the QTH light at reduced power density were tested for comparison. Increase in temperature from the tips of the light guides was measured at 0 and 5 mm in air (23 degrees C) using a temperature probe (Fluke Corp). Pulpal temperature increase was measured using a digital thermometer (Omega Co) and a K-type thermocouple placed on the central pulpal roof of human molars with a Class I occlusal preparation. Measurements were made over 90 seconds with an initial light activation of 40 seconds. To test curing efficiency, resin composites (Z100, A110, 3M/ESPE) were placed in a 2-mm deep and 8-mm wide plastic mold and cured with the LED and QTH curing lights at 1- and 5-mm curing distances. Knoop Hardness Numbers (KHN) were determiped on the top and bottom surfaces (Leco). Bottom hardness values were expressed as a percentage of maximum top hardness. No significant differences were found in maximum thermal emission or KHN ratios between the LED (LEDemetron 1) and the QTH (VIP) at maximum output and similar energy densities (ANOVA/Tukey's; alpha=0.05).  相似文献   

7.
AIM: The purpose of this study was to compare the surface hardness of a hybrid composite resin polymerized with different curing lights. METHODS AND MATERIALS: Two 3.0 mm thick composite resin discs were polymerized in a prepared natural tooth mold using: (1) a conventional quartz-tungsten halogen light (QTH- Spectrum 800); (2) a high-intensity halogen light, Elipar Trilight (TL)-standard/exponential mode; (3) a high-intensity halogen light, Elipar Highlight (HL)-standard/soft-start mode; (4) a light-emitting diode, Elipar Freelight (LED); and (5) a plasma-arc curing light, Virtuoso (PAC). Exposure times were 40 seconds for the halogen and LED lights, and three and five seconds for the PAC light. Following polymerization, the Knoop hardness was measured at the bottom and the top surfaces of the discs. RESULTS: Significant differences were found between top and bottom Knoop Hardness number (KHN) values for all lights. The hardness of the top and bottom surfaces of both specimens cured by the PAC light was significantly lower than the other lights. No significant hardness differences were observed between the remaining curing units at the top of the 2.0 mm specimens. Significant differences were found between the LED and two modes of HL on the bottom surfaces. For the 3.0 mm thick samples, while significant differences were noted between LED and TL standard mode and between the two TL curing modes on the top, significant differences were only observed between QTH and the standard modes of TL and HL at the bottom.  相似文献   

8.
PURPOSE: The influence of the curing mode (dual vs light) and of the photopolymerization through ceramic or resin composite on the degree of remaining carbon bonds was investigated via infrared spectroscopic analysis for 1 resin cement (Calibra, Caulk/Dentsply). MATERIALS AND METHODS: The 0.5-mm cement layer was photopolymerized for 40 s through the 2-mm-thick ceramic Empress 2 (Ivoclar) and Vitadur Alpha (Vident) and the laboratory-processed resin composite Sinfony (3M/ESPE). RESULTS: The dual-cured system polymerized better than the light mode. Photopolymerization of the resin cement through the translucent materials reduced its curing efficiency in both curing modes. The resin composite induced a more negative effect than the 2 ceramics tested. CONCLUSION: The curing mode and photopolymerization of dual-cured resin cements through esthetic restorative materials affects the degree of remaining double carbon bonds.  相似文献   

9.
This study evaluated, using Knoop hardness test, the polymerization depth of Rely-X dual-cured resin cement activated by chemical reaction alone (control group) or by chemical/physical mode with light curing through a 1.5-mm-thick ceramic layer (HeraCeram). Bovine incisors had their buccal surface flattened and hybridized. On this surface, a rubber mould (5 mm diameter; 1 mm high) was bulk filled with cement. Either a polyester strip or a 1.5-mm-thick disc of the veneering material was seated over this set. Light curing was performed with either conventional halogen light (QTH; XL2500) for 40 s, light-emitting diode (LED; Ultrablue Is) for 40 s or xenon plasma arc (PAC; Apollo 95E) for 3 s. In a control group, cement setting occurred by chemical reaction alone. After storage dry in dark (24 h/37 masculineC), the specimens (n=5) were sectioned for hardness (KHN) measurements at three depths in a microhardness tester (50 gf load/15 s). Data were submitted to ANOVA and Tukey's test (a = 0.05). Rely-X cement presented higher Knoop hardness values when the QTH and LED LCUs were used, compared to the control group and PAC. Light curing with PAC resulted in lower hardness compared to the control group. Cement hardness was significantly lower in deeper regions.  相似文献   

10.
AIM: The purpose of this study was to investigate the effect of different temperatures on the efficacy of polymerization during the insertion of composite resin using different light curing units. METHODS AND MATERIALS: A total of 45 disc-shaped specimens were fabricated from Z250 composite resin (3M/ESPE, St. Paul, MN, USA) with 15 each prepared at three different temperatures (refrigerated to 5 masculineC, room temperature at 25 masculineC, and preheated to 37 masculineC). Each of these temperature-controlled specimen groups of 15 were then subdivided into three groups of five specimens, according to the type of curing light used to polymerize them. Curing lights included a conventional halogen light (QTH) in two modes (continuous and soft-start polymerization) and a light emitting diode (LED). The microhardness of the top and bottom surfaces of the specimens was determined using a Buehler Micromet II digital microhardness tester (Buehler, Dusseldorf, Germany). Data obtained was analyzed using two-way analysis of variance (ANOVA)/Post Hoc Tukey's test at a 0.05 significance level. RESULTS: As the temperature of composite resin increased, the top and bottom microhardness of the specimens also increased regardless of the type of polymerizing light used. The LED light produced a significantly better hardness on top and bottom surfaces of composite resin specimens polymerized at the three different temperatures. Effectiveness of cure at top and bottom surfaces of composite specimens was significantly reduced by using soft-start curing. CONCLUSION: The use of pre-warmed composite resins might help to improve polymerization of composite resin especially at the deeper areas of a restoration which could result in an increase in the expected life of a composite restoration.  相似文献   

11.

Objective

This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light-emitting diode (LED) or quartz tungsten halogen (QTH) light source.

Material and Methods

Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons.

Results

Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness.

Conclusions

Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.  相似文献   

12.
13.
The microhardness of a bleaching-shade resin composite polymerized with different light-curing units was evaluated. Composite samples (3M ESPE Filtek Supreme) were applied to brass rings (2 mm in thickness, 5 mm in diameter). Three commercial LED lights were used to polymerize the specimens and the results were compared to those of a conventional halogen light. The light sources used in the present study were: Demetron Optilux 401 (QTH), 3M ESPE Elipar FreeLight (LED 1); Kerr L.E. Demetron I (LED 2), and ColtoluxLED lights (LED 3). The microhardness of the top and bottom surfaces was assessed with a digital Vickers hardness-measuring instrument, under load. At the bottom surface, no significant difference among the light sources was observed (two-way ANOVA). At the top surface, the QTH light source presented significantly higher hardness values compared to the values observed when LED 1 and LED 3 were used. There were no significant differences between the QTH and LED 2 light sources. Significantly higher hardness values were also found at the top surface when compared to the values observed at the bottom surface. The power density of the polymerization light sources seemed to be responsible for the observed resin composite hardness, not their irradiance.  相似文献   

14.
OBJECTIVE: To test the null hypothesis that when the equivalent total light energy is irradiated to three orthodontic adhesive resins, there is no difference between the microhardness and water sorption values regardless of the curing light sources. MATERIALS AND METHODS: Samples were divided into six groups according to the combination of three orthodontic adhesives (Kurasper F, Light-Bond, Transbond XT) and two light intensities (quartz tungsten halogen [QTH] and high intensity quartz tungsten halogen [HQTH]). One half of each of the 40 samples of three adhesive pastes was polymerized for 20 seconds by a QTH light source, and the other half was polymerized for 10 seconds by a HQTH light source. Water sorption was determined and Vickers hardness was established with three measurements per sample at the top, center, and bottom. Statistical analysis was performed using two-way analysis of variance (ANOVA) with multiple comparisons (Tukey-HSD). RESULTS: Statistically significant differences were found among all adhesives for water sorption and hardness values cured with QTH and HQTH. The HQTH curing unit resulted in higher values than did the QTH. The highest water sorption values were observed for Kurasper F cured with HQTH and the lowest value was observed for Transbond XT cured with QTH. For microhardness Light-Bond cured with HQTH produced the highest values, and Transbond XT cured with QTH produced the lowest. CONCLUSIONS: When the equivalent total light energy is irradiated to three orthodontic adhesive resins, there are significant differences between the microhardness and water sorption values cured with the QTH and HQTH light source. The null hypothesis is rejected.  相似文献   

15.
ObjectivesThe degree of monomer conversion is crucial in determining the mechanical and clinical performance of dental resin composites. This study investigated the polymerization adequacy of two bulk-fill resin composites polymerized by Quartz-Tungsten-Halogen (QTH) and Light Emitting Diode (LED) light curing units at different depths.MethodsTwo bulk-fill resin composites (X-tra Fil; Voco and Tetric N-Ceram Bulk-fill; Ivoclar-Vivadent) with diameters of 7 mm and thicknesses of 1–4 mm were prepared and light-cured by LED or QTH. Then, the degree of conversion (DC) and microhardness of the two bulk-fill composites were evaluated.ResultsThe microhardness of X-tra fill was significantly higher than that of Tetric N-Ceram polymerized by LED or QTH. The microhardness and DC of X-tra fil exhibited no significant difference among the increments regardless of type of light source. The DC, however, significantly decreased in deep increments for Tetric N-Ceram polymerized by QTH.ConclusionsThe polymerization efficacies of the two bulk-fill composites were different in terms of the depth of cure and type of light source. The DC and microhardness of the X-tra fill bulk-fill composite polymerized by either QTH or LED did not decrease up to a thickness of 4 mm. Thus, new generations of LED light sources are better options for polymerizing the bulk-fill resin composites than QTH.  相似文献   

16.
This study compared the efficacy of using conventional low-power density QTH (LQTH) units, high-power density QTH (HQTH) units, argon (Ar) laser and Plasma arc curing (PAC) units for curing dual-cured resin cements and restorative resin composites under a pre-cured resin composite overlay. The microhardness of the two types of restorative resins (Z100 and Tetric Ceram) and a dual-cured resin cement (Variolink II) were measured after they were light cured for 60 seconds in a 2 mm Teflon mold. The recorded microhardness was determined to be the optimum microhard-ness (OM). Either one of the two types of restorative resins (Z100, Tetric Ceram) or the dual cured resin cement (Variolink II) were placed under a 1.5-mm thick and 8 mm diameter pre-cured Targis (Vivadent/Ivoclar AG, Schaan, Liechtenstein) overlay. The specimens that were prepared for each material were divided into four groups depending upon the curing units used (HQTH, PAC, Laser or LQTH) and were further subdi-vided into subgroups according to light curing time. The curing times used were 30, 60, 90 and 120 seconds for HQTH; 12, 24, 36 and 48 seconds for the PAC unit; 15, 30, 45 and 60 for the Laser and 60, 120 or 180 seconds for the LQTH unit. Fifteen specimens were assigned to each sub- group. The microhardness of the upper and and lower composite surfaces under the Targis overlay were measured using an Optidur Vickers hardness-measuring instrument (G?ttfert Feinwerktechnik GmbH, Buchen, Germany). In each material, for each group, a three-way ANOVA with Tukey was used at the 0.05 level of significance to compare the microhardnesses of the upper and lower composite surfaces and the previously measured OM of the material. From the OM of each material, 80% OM was calculated and the time required for the microhardness of the upper and lower surface of the specimen to reach 100% and 80% of OM was determined. In Z100 and Tetric Ceram, when the composites were light cured for 120 seconds using the HQTH lamp, microhardnesses of the upper and lower surfaces reached OM. When they were cured with the PAC unit, only 48 seconds was needed for the upper and lower surfaces to reach OM. When they were cured using the laser, the lower surface did not reach OM in any of the groups. When the specimens were cured using the LQTH lamp, 180 seconds of curing was needed for Z100 to reach OM, whereas Tetric Ceram did not reach OM. In Z100, 60, 12, 30 and 60 seconds were needed in HQTH, PAC, Laser and LQTH, respectively, for the specimens to reach 80% OM. Tetric Ceram was needed 60,24,45 and 180 seconds to reach 80% OM. In the Variolink II specimen, microhardness of the upper and lower surfaces did not reach OM even though they were light cured with the HQTH lamp for 120 seconds. When they were cured with the PAC unit, 48 seconds was insufficient for them to reach OM. When they were cured with laser for 45 and 60 seconds, microhardness reached OM on the upper surface but not on the lower surface. However, when they were cured using the LQTH lamp, microhardness did not reach OM on the upper and lower surfaces even though the curing time was extended to three minutes. In Variolink II, 120, 36, 45 and >180 seconds were needed in HQTH, PAC, Laser and LQTH, respectively, for the specimens to reach 80% OM. In conclusion, the PAC system is the most effective curing system to cure the restorative composite and dual cured resin cement under the 1.5 mm Targis overlay, followed by the laser, HQTH and LQTH units. In addition, the restorative composites cured more efficiently than the dual-cured resin cements.  相似文献   

17.
This study analyzed the degree of conversion, temperature increase and polymerization shrinkage of two hybrid composite materials polymerized with a halogen lamp using three illumination modes and a photopolymerization device based on blue light emitting diodes. The degree of conversion of Tetric Ceram (TC) (Ivoclar Vivadent) and Filtek Z 250 (F) (3M/ESPE) was measured by Fourier transformation infrared spectroscopy at the surface and 2-mm depth; temperature rise was measured by digital multimeter, and linear polymerization shrinkage was measured during cure by digital laser interferometry. Composite samples were illuminated by quartz-tungsten-halogen curing unit (QTH) (Astralis 7, Ivoclar Vivadent) under the following modes: "high power" (HH) 40 seconds at 750 mW/cm2, "low power" (HL) 40 seconds at 400 mW/cm2 and "pulse/soft-start" (HP) increasing from 150 to 400 mW/cm2 during 15 seconds followed by 25 seconds pulsating between 400 and 750 mW/cm2 in 2-second intervals and by light emitting diodes (LED) (Lux-o-Max, Akeda Dental) with emitted intensity 10 seconds at 50 mW/cm2 and 30 seconds at 150 mW/cm2. A significantly higher temperature increase was obtained for both materials using the HH curing mode of halogen light compared to the HP and HL modes and the LED curing unit after 40 seconds. Significantly lower temperature values after 10-second illumination were obtained when LED was used compared to all halogen modes. For all curing modes, there was no significant difference in temperature rise between 20 and 40 seconds of illumination. Results for the degree of conversion measurements show that there is a significant difference in the case of illumination of resin composite samples with LED at the surface and 2 mm depth. For polymerization shrinkage, lower values after 40 seconds were obtained using LED compared to QTH.  相似文献   

18.
This study compared the Vickers hardness of the top and bottom surfaces of two compomers (Compoglass F and Dyract AP) polymerized for 20 and 40 seconds with two different light curing systems. Five samples for each group were prepared using Teflon molds (9x2 mm) and were light-cured either with a conventional halogen lamp (Optilux 501) or LED light (LEDemetron I) for 20 or 40 seconds. After curing, all the samples were stored in distilled water for 24 hours at 37 degrees C. The Vickers hardness measurements were obtained from the top and bottom surfaces of each sample. ANOVA, Scheffé and t-test were used to evaluate the statistical significance of the results. For the top and bottom surfaces, the light curing systems and curing times tested showed no statistical difference, except for Optilux 501, which used 20 seconds for both compomers (p<0.05). There was no significant difference in the microhardness of both surfaces of Compoglass F and Dyract AP cured for either 20 or 40 seconds using LEDemetron I. With Optilux 501, the microhardness of samples cured for 40 seconds was significantly higher than 20 seconds (p<0.05).  相似文献   

19.
固化光源对牙本质粘结强度的影响   总被引:1,自引:1,他引:0  
目的:研究两种固化光源对牙本质粘结的微拉伸强度的影响。方法:选取因正畸需要拔除的前磨牙20颗,随机分成4组。去除殆面釉质,暴露平的牙本质表面,分别使用卤素光固化灯和发光二极管光固化灯固化粘结剂和复合树脂,形成3mm高的树脂冠:A组:卤素光固化灯固化粘结剂20s,卤素光固化灯固化树脂40s;B组:卤素光固化灯固化粘结剂20s,发光二极管光固化灯固化树脂30s;C组:发光二极管光固化灯固化粘结剂20s,发光二极管光固化灯固化树脂30s;D组:发光二极管光固化灯固化粘结剂20S,卤素光固化灯固化树脂40s。所有实验牙置于(37±1)℃的生理盐水中24h后,用硬组织切片机将其切成粘结面积约1.0mm×1.0mm的条形试件,用以测试牙本质微拉伸粘结强度。在扫描电镜下观察样本的断裂界面。结果:固化粘结剂的光源对牙本质微拉伸粘结强度的影响有显著的统计学意义(P〈0.05)。4组中微拉伸粘结强度最大值为(29.55±4.39)MPa,出现在C组。扫描电镜下观察测试样本的断裂多数为粘结界面破坏。结论:固化光源对牙本质粘结的微拉伸强度存在影响,牙本质的粘结强度主要与固化粘结剂的光源有关。本实验显示使用发光二极管光固化灯固化粘结剂20s,发光二极管光固化灯固化树脂30s时牙本质的粘结强度最好。  相似文献   

20.
This study evaluated the microhardness of a dual resin cement under the influence of thickness and shade of a feldspathic ceramic. Ninety-five bovine incisors were selected; the crowns, with the roots removed, were embedded in a polystyrene resin and were randomly divided into 19 groups (n=5). On the buccal surface, a standardized cavity, 4.0 mm in diameter and 1.0 mm in depth, was prepared. Ceramic restorations (Noritake Ex 3) were manufactured with 4.0 mm diameter and 1, 2 and 4-mm thicknesses at shades A1, A2, A3, A3.5 and A4. A dual resin cement (Rely X-ARC) was inserted into the prepared cavity. A mylar strip was positioned over the prepared cavity, and light curing was performed for 40 seconds following the protocols: controls-without insertion of the restoration at distances of 0.0, 1.0, 2.0 and 4.0 mm. The remaining groups had the restorations positioned between the resin cement and light source during polymerization. The Vickers hardness test was performed on the cement layer with 50 g of load application for 30 seconds, with 5 indentations for each sample. Two-way ANOVA (5 x 3) and Tukey test (alpha = 0.05) were used to compare the results. The chemical curing of the dual resin cement was not sufficient to compensate for the energy attenuation promoted by the interposition of A3.5 and A4 ceramic material with 4-mm of thickness. The thickness had a greater influence on the cement microhardness than the ceramic restoration shade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号