首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current work involves thermal hydraulic calculation of Lithium Lead Cooling System (LLCS) for the Indian test blanket module (TBM) for testing in International Thermonuclear Experimental reactor (ITER). It uses the RELAP portion of RELAP/SCDAPSIM/MOD4.0. Lithium-lead eutectic (LLE) has been used as multiplier, breeder and coolant in TBM. Thermodynamic and transport properties of the LLE have been incorporated into the code. The main focus of this study is to check the heat transfer capability of LLE as coolant for TBM system for steady state and the considered anticipated operational occurrences (AOO's), namely, loss of heat source, loss of primary flow and loss of secondary flow. The six heat transfer correlation (reported for liquid metals in the literature) has been tested for steady state analysis of LLCS loop and results are roughly same for all of them. A good agreement has been observed between the operating conditions of LLCS with those of RELAP5 calculations. Results from transient calculations show that a maximum temperature of 875 K is attained during a 300 s loss of primary flow (LLE).  相似文献   

2.
《Fusion Engineering and Design》2014,89(7-8):1397-1401
Dynamic tritium concentration measurement in lead–lithium eutectic is of major interest for a reliable tritium testing program in ITER TBM and for an experimental proof of tritium self-sufficiency in liquid metal breeding systems. Potentiometric hydrogen sensors using different solid-state electrolytes for molten lead–lithium eutectic have been reported and tested by the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS).In the present work the following ceramic elements have been synthesized and characterized by X-ray diffraction (XRD) in order to be tested as a Proton Exchange Membranes (PEM) H-probes: BaCeO3, BaCe0.6Zr0.3Y0.1O3−δ and Sr(Ce0.9–Zr0.1)0.95Yb0.05O3−δ. Potentiometric measurements of the synthesized ceramic elements have been performed shifting from a fixed hydrogen partial pressure at the working electrode to high purity argon. In this experimental campaign a fixed and known hydrogen pressure has been used in the reference electrode. The goal of these experiments is to evaluate the sensor response time when the hydrogen concentration in the environment is rapidly changed. All experiments have been done at 500 °C and 600 °C. The sensor constructed using the proton conductor element BaCe0.6Zr0.3Y0.1O3−δ exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation. In contrast, the sensors constructed using the proton conductor elements BaCeO3 and Sr(Ce0.9–Zr0.1)0.95Yb0.05O3−δ showed higher deviations between experimental and theoretical data, and long response times.  相似文献   

3.
《Fusion Engineering and Design》2014,89(7-8):1362-1369
The Indian Lead–Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) is the Indian DEMO relevant blanket module, as a part of the TBM program in ITER. The LLCB TBM will be tested from the first phase of ITER operation in one-half of an ITER port no. 2. LLCB TBM-set consists of LLCB TBM module and shield block, which are attached with the help of attachment systems. This LLCB TBM set is inserted in a water-cooled stainless steel frame called ‘TBM frame’, which also provides the separation between the neighboring TBM-sets (Chinese TBM set) in port no. 2. In LLCB TBM, high-pressure helium gas is used to cool the first wall (FW) structure and lead–lithium eutectic (Pb–Li) flowing separately around the ceramic breeder (CB) pebble bed to cool the TBM internals which are heated due to the volumetric neutron heating during plasma operation. Low-pressure helium is purged inside the CB zones to extract the bred tritium. Thermal-structural analyses have been performed independently on LLCB TBM and shield block for TBM set using ANSYS. This paper will also describe the performance analysis of individual components of LLCB TBM set and their different configurations to optimize their performances.  相似文献   

4.
《Fusion Engineering and Design》2014,89(7-8):1223-1226
Indian LLCB – TBM uses liquid Lead-Lithium (Pb-Li) as tritium breeder, neutron multiplier and coolant. Tritium bred in liquid PbLi stream has to be recovered by tritium extraction system. Therefore, a reliable sensor with quick response time for measurement of hydrogen isotope is essential.A hydrogen isotope sensor in liquid Pb-Li, based on permeation of hydrogen isotopes through metal (sensor material) is designed. The capsule shaped sensor, made of iron membrane coated with Pd from inside (downstream side), allow hydrogen isotope to permeate through it. The design work mainly includes the selection of proper material, its thickness and surface conditions, which is to be supported by numerical calculations for optimization of maximum permeation flux, fast response and fabricability. The numerical calculation utilizes a physical model having recombination of two hydrogen isotope atoms at the surface and atomic diffusion through the bulk. In this work, design calculations based on numerical simulation and fabrication procedure of the hydrogen isotope sensor are presented.  相似文献   

5.
《Fusion Engineering and Design》2014,89(7-8):1107-1112
The Indian LLCB TBM, currently under development, will be tested from the first phase of ITER operation (H–H phase) in one-half of the ITER port no-2. The present LLCB TBM design has been optimized based on the neutronic as well as thermal hydraulic analysis results. LLCB TBM R&D activities are primarily focused on (i) development of technologies related to various process systems such as Helium, Pb–Li liquid metal and tritium, (ii) development and qualification of blanket materials viz., structural material (IN-RAFMS), tritium breeding materials (Pb–Li, and Li2TiO3), (iii) development and qualification of fabrication technologies for TBM system. The present status of LLCB TBM design activities as well as the progress made in major R&D areas is presented in this paper.  相似文献   

6.
Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) blanket with ferritic steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The preliminary design and its performance of KO HCML test blanket module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300 °C and an outlet temperature up to 400 °C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 °C at the structural materials and the coolant velocities are 45 and 11.5 m/s in the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 123 MPa and the maximum deformation of it is 3.73 mm, which is lower than the maximum allowable stress.  相似文献   

7.
The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak.The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port.This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.  相似文献   

8.
A two dimensional solver is developed for MHD flows with low magnetic Reynolds’ number based on the electrostatic potential formulation for the Lorentz forces and current densities which will be used to calculate the MHD pressure drop inside the channels of liquid breeder based Test Blanket Modules (TBMs). The flow geometry is assumed to be rectangular and perpendicular to the flow direction, with flow and electrostatic potential variations along the flow direction neglected. A structured, non-uniform, collocated grid is used in the calculation, where the velocity (u), pressure (p) and electrostatic potential (?) are calculated at the cell centers, whereas the current densities are calculated at the cell faces. Special relaxation techniques are employed in calculating the electrostatic potential for ensuring the divergence-free condition for current density. The code is benchmarked over a square channel for various Hartmann numbers up to 25,000 with and without insulation coatings by (i) comparing the pressure drop with the approximate analytical results found in literature and (ii) comparing the pressure drop with the ones obtained in our previous calculations based on the induction formulation for the electromagnetic part. Finally the code is used to determine the MHD pressure drop in case of LLCB TBM. The code gives similar results as obtained by us in our previous calculations based on the induction formulation. However, the convergence is much faster in case of potential based code.  相似文献   

9.
《Fusion Engineering and Design》2014,89(7-8):1126-1130
Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept which uses the eutectic Pb-16Li as both breeder and neutron multiplier; the Helium-Cooled Pebble-Bed (HCPB) concept which features lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Each TBM is associated with several sub-systems required for their operation; together they form the Test Blanket System (TBS). This paper presents the state of HCLL and HCPB TBS instrumentation design. The discussion is based on the systems functional analysis, from which three main categories of instrumentation are defined: those relevant to safety functions; those relevant to interlock functions; those designed for the control and scientific exploitation of the devices based on the TBM program objectives.  相似文献   

10.
Using bubble column to extract tritium from lead lithium (Pb–17Li) eutectic is an effective way in the process of tritium extraction in liquid blanket system, where the hydrodynamic characteristics of the gas–liquid two-phase flow in the columns play a very important role. In order to understand the two-phase flow details and investigate the influence factors on the hydrodynamic performance, in this paper the flow behaviors in the cylindrical bubble columns with different heights and purge gas inlet velocities using computational fluid dynamics coupled with population balance model were simulated. Liquid flow field, bubble Sauter mean diameter, time-averaged gas holdup and two-phase interfacial area for the different cases were obtained and compared. The simulation results showed good agreement with previous studies, and which indicated that bubble size and gas holdup formation are mainly determined by vortical flow. In addition, interfacial area can be enhanced by increasing the purge gas inlet velocity and column height. However, the enhancement effect will trail away when the gas inlet velocity is too fast, and the contribution of column height is relatively small.  相似文献   

11.
用热解吸法研究锂陶瓷中氚扩散行为   总被引:2,自引:0,他引:2  
杨本福  曹小华  罗顺忠 《核技术》2001,24(4):321-326
采用热解吸法研究了氚在锂陶瓷γ -LiAlO2 中的扩散行为。根据不同线性升温速率下的氚释放曲线 ,分别测出了以HTO形式释放的氚和以HT形式释放的氚的表观扩散活化能分别为(2 53± 50 )kJ·mol-1和 (12 7± 5)kJ·mol-1  相似文献   

12.
India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER. The module has lithium titanate for tritium breeding and beryllium for neutron multiplication. Beryllium also enhances tritium breeding. A design for the module is prepared for detailed analysis. Neutronic analysis is performed to assess the tritium breeding rate, neutron distribution, and heat distribution in the module. The tritium production distribution in submodules is evaluated to support the tritium transport analysis. The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design. The heat deposition profile of the entire module is generated to support the heat removal circuit design. The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones. The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER, considering the 400 s ON time and 1400 s dwell time. The estimated nuclear heat load on the entire module is around 474 kW, which will be removed by the high-pressure helium cooling circuit. The heat deposition in the test blanket model (TBM) is huge (around 9 GJ) for an entire day of operation of ITER, which demonstrates the scale of power that can be produced through a fusion reactor blanket. As per the Brayton cycle, it is equivalent to 3.6 GJ of electrical energy. In terms of power production, this would be around 1655 MWh annually. The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data. The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.  相似文献   

13.
ITER中国液态锂铅实验包层模块结构设计与加工   总被引:3,自引:2,他引:1  
根据ITER实验包层的发展目标,实验要求,限制条件,结合聚变发电反应堆FDS-Ⅱ DLL/SLL包层方案设计了DFLL-TBM原型结构,给出了加工工艺和装配序列方案.该实验模块特点是极向LiPb流道易于布置FCI流道插件,"]"型隔板和"盒形"背板式联箱简化冷却方案和结构.这种简单的结构易于加工制造,易于派生出在ITER不同运行阶段实验的系列模块,符合在ITER进行SLL-TBM和DLL-TBM两种包层模块实验的策略.  相似文献   

14.
ITER中国液态锂铅实验包层模块氚提取系统设计   总被引:12,自引:0,他引:12  
ITER中国液态锂铅实验包层模块氚提取系统(TES)是通过含0.1%H2的低压氦吹洗气流,在鼓泡器中将液态锂铅内产生的氚交换和载带出来,进入同位素分离系统连接进行氚提取.给出了该系统总体参数、工艺流程、辅助设施等设计.  相似文献   

15.
The production of highly radiotoxic polonium isotopes poses serious safety concerns for the development of future nuclear systems cooled by lead bismuth eutectic (LBE). In this paper it is shown that polonium can be extracted efficiently from LBE using a mixture of alkaline metal hydroxides (NaOH + KOH) in a temperature range between 180 and 350 °C. The extraction ratio was analyzed for different temperatures, gas blankets and phase ratios. A strong dependence of the extraction performance on the redox properties of the cover gas was found. While hydrogen facilitates the removal of polonium, oxygen has a negative influence on the extraction. These findings open new possibilities to back up the safety of future LBE based nuclear facilities.  相似文献   

16.
The European Tritium Handling Experimental Laboratory (ETHEL) at JRC-Ispra is constructed within the ESSOR reactor complex and is therefore required to be consistent with the existing site license agreement. This paper summarizes the status of ETHEL under the Italian licensing legislation and focuses, in particular, on the problem of tritium discharges under routine conditions. First, the available margins for additional tritium releases from the ESSOR complex are established by taking into account the existing operational requirements. The discharge requirements of ETHEL are then estimated by analyzing the various in-plant routes by which tritium may be released to the environment under normal operation conditions. An analysis is also undertaken for assessing the radiological impact on the population due to exposure and ingestion pathways. It is shown that the expected gaseous releases and tritiated aqueous discharges comply comfortably with the existing site limits and the fraction available for ETHEL.  相似文献   

17.
氦气冷却系统是ITER中国液态锂铅实验包层模块(DFLL-TBM)在ITER装置内进行实验的重要辅助系统.根据ITER运行时的热工条件、安全要求、空间要求,分析了DFLL-TBM氦气冷却系统的功能,确定氦气冷却系统的设计原则和要求,在此基础上给出氦气冷却系统的初步设计方案和设备布置.该氦气系统的特点体现在:双功能,即有宽的裕量满足SLL-TBM和DLL-TBM实验;两条氦气回路共享压力控制单元和氦气净化子系统;旁路设计调节TBM和热交换器氦气的出口温度.  相似文献   

18.
《Fusion Engineering and Design》2014,89(9-10):1969-1974
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.  相似文献   

19.
ITER要求各参与国的实验包层模块在实验前必须提交安全分析报告(含确定论分析和概率论分析),进而获取安全许可证.结合中国双功能锂铅实验包层模块的具体特点,采用了假设始发事件-潜在影响表(PIE-PIT)分析方法对DFLL-TBM进行了安全评估与分析,已验证确定论安全分析所选择的三个参考事件是否可包络PIE-PIT分析得到的严重事故序列.  相似文献   

20.
Tritium behavior in the reactor such as production, diffusion and release are accompanied by their adsorption and desorption in graphite materials, which are essential to the safety of high temperature gas cooled reactor (HTGR). In order to study this important issue, hydrogen instead of tritium is experimentally used in this work and justified viable by theory. By performing multiple sets of comparative experiments, the features of hydrogen adsorption and desorption behavior changing by adsorption temperature and time in typical graphites used in HTR-PM (High Temperature Gas Cooled Reactor – Pebble Bed Module), i.e. reflective layer, fuel element and boron carbon bricks, have been observed and analyzed. Furthermore, the adsorption rates of hydrogen in the three materials as above at different conditions are also given. Based on the experimental results, tritium behavior in the HTR-PM was inferred and estimated, which is significant for the further study on the mechanism of tritium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号