首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt has been made in the present work to reveal the directivity of solar non-thermal X-ray emission using the data obtained from the Prognoz and Explorer satellites. The frequency of occurrence of X-ray bursts and the mean intensities of the emission are studied as a function of distance from the central meridian. The most complete statistics have been obtained for the 4–24 keV X-ray bursts for the period 1970–1973. The X-ray burst frequency of occurrence normalized to the corresponding H flare frequency increases towards the solar limb. During the studied period this trend is more pronounced to the east than to the west. Distributions of the mean intensities of X-ray bursts are very similar to those of the frequency of occurrence of X-ray bursts; the effect is more noticeable for the low intensity bursts. The effect of the east-west asymmetry for H flares has been found to vary in magnitude and direction during the 20th solar activity cycle.  相似文献   

2.
Second-step acceleration of nonrelativistic protons and ions in impulsive solar flares is discussed extending our earlier calculations for relativistic electrons. We derive the relevant particle transport equation, discussing in detail the influence of the particle's effective charge and mass number on the various momentum gain (stochastic acceleration, diffusive shock wave acceleration) and loss (Coulomb interactions, particle escape) processes. Analytical solutions for the ion-momentum spectra in the hard-sphere approximation are given. The inclusion of Coulomb losses modify the particle spectra significantly at kinetic energies smaller than E B = 0.64( e /5.0) MeV nucl.–1 from the well-known Bessel function variation in long-duration flares. For equal injection conditions this modification explains the observed much smaller ion fluxes from impulsive flares at high energies as compared to long-duration flares. We also calculate the 3He/4He-isotope variation as a function of momentum in impulsive flares in the hard-sphere approximation and find significant variations near E m = 0.38(T e /2 × 106 K) MeV nucl.–1, where T e is the electron temperature of the coronal medium.  相似文献   

3.
A model for second-step electron acceleration in impulsive solar flares is presented. We have extended the theory of stochastic particle acceleration to include Coulomb energy losses which become important at low coronal heights. This inclusion successfully explains the observed steepening of interplanetary electron spectra below 3 MeV following impulsive solar flares taking place at low coronal heights. It also explains the observed spectral differences of relativistic electrons in long-duration and impulsive flares.  相似文献   

4.
We discuss the preheating phase of solar flares triggered by emerging magnetic flux. We consider the development of microinstabilities in the diffusion region during the emergence process and we propose four different types of reconnection, by which we explain the preheating, as well as the impulsive phase of flares. We find that during the emergence of new magnetic flux the current sheet will not jump from the initial classical state to a fully turbulent one, but will remain in a marginally turbulent state which may develop either gradually or impulsively depending on the conditions of emergence. As a consequence of this, we find that four cases of reconnection are indeed possible: a week gradual heating, a weak impulsive process, a gradual preheating followed by an impulsive phase, and violent bursty reconnection.The expansion rate of the diffusion region, the duration of the gradual phase, the magnetic energy release, and the energy deposition rate in coronal loops during the gradual phase are derived under simplifying assumptions and applied to X-ray and UV observations of flares from the Solar Maximum Mission.On leave from the Department of Astronomy, Nanjing University, Nanjing, The People's Republic of China.  相似文献   

5.
We analyze the observations of the hard (ACS SPI, > 150 keV) and soft (GOES, 1–8 Å) X-ray emissions and the microwave (15.5 GHz) emission in the solar flares on September 7, 2005 and December 6 and 13, 2006. The time profiles of the nonthermal emission from these flares had a complex structure, suggesting that active processes in the flare region continued for a long time (more than an hour). We have verified the linear relationship between the nonthermal flux and the time derivative of the soft X-ray flux (the Neupert effect) in the events under consideration. In the first two cases, the Neupert effect held at the time of the most intense nonthermal emission peak, but not at the decay phase of the soft X-ray emission, when the intensity of the nonthermal emission was much higher than the background values. At the same time, the hard X-ray emission was suppressed compared to the main peak, while the microwave emission remained approximately at the same level. In the December 13, 2006 event, the prolonged hard X-ray emission was difficult to observe due to the fast arrival of solar protons, but the Neupert effect did not hold for its main peak either. At comparable intensities of the microwave emission on December 6 and 13, the intensity of the hard X-ray emission on December 13 at the time of the main peak was suppressed approximately by an order of magnitude. These observational facts are indicative of several particle acceleration and interaction episodes under various physical conditions during one flare. When the Neupert effect did not hold, the interaction of electrons took place mainly in a low-density medium. An effective escape of accelerated particles into interplanetary space rather than their precipitation into dense layers of the solar atmosphere may take place precisely at this time.  相似文献   

6.
We propose a new two-stage model for acceleration of electrons in solar flares. In the first stage, electrons are accelerated stochastically in a post-reconnection turbulent downflow. The second stage is the reprocessing of a subset of these electrons as they pass through a weakly compressive fast shock above the apex of the closed flare loop on their way to the chromosphere. We call this the 'shock-reprocessing' model. The model reproduces the sign and magnitude of the energy-dependent arrival time delays for both the pulsed and smooth component of impulsive solar flare X-rays, but requires either enhanced cooling or the presence of a loop-top trap to explain the concavity of the observed time delay energy relation for the smooth component. The model also predicts an emission site above the loop-top, as seen in the Masuda flare. The loop-top source distinguishes the shock-reprocessing model from previous models. The model makes testable predictions for the energy dependence of footpoint pulse strengths and the location and spectrum of the loop-top emission, and can account for the observed soft-hard-soft trend in the spectral evolution of footpoint emission. The model also highlights the concept that magnetic reconnection provides an environment which permits multiple acceleration processes. Which combination of processes operates within a particular flare may depend on the initial conditions that determine, for example, whether the reconnection downflow is turbulent or laminar. The shock-reprocessing model comprises one such combination.  相似文献   

7.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

8.
There is observational evidence showing that stellar and solar flares occur with a similar circumstance, although the former are usually much more energetic. It is expected that the bombardment by high-energy electrons is one of the chief heating processes of the flaring atmosphere. In this paper we study how a precipitating electron beam can influence the line profiles of Ly α , H α , Ca  ii K and λ 8542. We use a model atmosphere of a dMe star and make non-LTE computations taking into account the non-thermal collisional rates owing to the electron beam. The results show that the four lines can be enhanced to different extents. The relative enhancement increases with increasing formation height of the lines. Varying the energy flux of the electron beam has different effects on the four lines. The wings of Ly α and H α become increasingly broad with the beam flux; change of the Ca  ii K and λ 8542 lines, however, is most significant in the line centre. Varying the electron energy (i.e. the low-energy cut-off for a power-law beam) has a great influence on the Ly α line, but little on the H α and Ca  ii lines. An electron beam of higher energy precipitates deeper, thus producing less enhancement of the Ly α line. The Ly α /H α flux ratio is thus sensitive to the electron energy.  相似文献   

9.
The current status of our knowledge on the theory of radio emission from mildly relativistic electrons and its application in the interpretation of solar radio bursts are reviewed. The recent high spatial resolution microwave observations have given important information about the geometry of the emitting region and have helped in the computation of better inhomogeneous models that reproduce qualitatively several observational characteristics of the emission. The limitations of the observations and the theory (particularly the effect of mode coupling on the observed polarisation) are pointed out and the potential of the gyrosynchrotron process as a diagnostic of the physical conditions is discussed. This will help us to obtain quantitative information about the changes of the magnetic field and the acceleration of particles in solar flares.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

10.
In some solar energetic particle events relatively intense proton fluxes are accompanied by disproportionately weak intensity of-burst. A possible reason for such a situation is discussed in this paper. We use the idea that the dynamics of particles in flare loops strongly influences the efficiency of their escape into interplanetary space. It is proposed that in events with weak impulsive phase flare loops are large sized and stretched high into the corona, the magnetic field is weak, and the level of excited turbulence is rather low. All this leads to the weak diffusion of protons into the loss cone, a large lifetime of a particle in the loop ( 103 s) and, hence, to the relatively high efficiency of their escape into interplanetary space.  相似文献   

11.
We describe briefly the Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission and discuss data pertaining to the emissions observed in lines originating in the transition-region plasma, particularly during impulsive flares. The data pertain to lines from the following ions: SiII, CIV, OIV, SiIV, OV, and FeXXI.  相似文献   

12.
We present spectral data for three white-light flares (WLFs) showing Balmer continuum at wavelengths 3700 Å. These flares also have a weaker continuum extending toward longer wavelengths, from which, in one flare where this continuum is sufficiently bright, we are able to identify a Paschen jump near 8500 Å. The presence of the latter suggests that the Paschen continuum may be a substantial contributor to the WLF continuum at visible wavelengths. We note the possibility, therefore, that the entire continuum of this particular flare may be dominated by H fb emission.In all three flares the head of the Balmer continuum, as well as the head of the Paschen continuum in the flare where it was identified, is advanced toward longer wavelengths as a result of the blending of the hydrogen emission lines of the respective series. The principal quantum number of the last resolvable line of the Balmer or Paschen series is approximately 16. The electron density, as measured from the halfwidths of the high Balmer lines in two of the flares, is approximately 5 × 1013 cm–3. Due to possible misplacements of the spectrograph slit, however, the electron density in the brightest kernels of the WLFs may not have been obtained.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST 78-17292 with the National Science Foundation.  相似文献   

13.
The broad-band EUV and microwave fluxes correlate strongly with hard X-ray fluxes in the impulsive phase of a solar flare. This note presents numerical aids for the estimation of the non-thermal electron fluxes from these correlations, using the SFD (sudden frequency deviation) ionospheric data to measure the EUV flux.  相似文献   

14.
The energy and angular distributions of electrons have been studied by combining small angle scatterings using analytical treatment with large angle collisions using Monte Caroo calculations as a function of column density for initially power-law electron distributions and incidence angles of 0, 30, and 60°. Using these distributions the X-ray and EUV line flux as a function of column density has been computed. The flux increases with increase in column density. At the initial column densities the contribution of non-thermal electrons for the production of line flux is negligible. However, it becomes significant at intermediate column densities at which the electron energy and angular distributions have non-Maxwellian nature. X-ray and EUV flux have also been calculated as a function of electron spectral index at a fixed column density. It falls steeply with increase in spectral index. The calculated flux is compared with the observations.  相似文献   

15.
We present a model describing changes in ion charges during solar flares based on the observed fact that low temperature magnetic loops emerge before flare bursts and the plasma is rapidly heated during the impulsive phase. Results of numerical calculations of the charge state distribution and mean ionic charges of the elements C, N and O agree perfectly with the observations.  相似文献   

16.
De Jager  Cornelis 《Solar physics》1985,98(2):267-280
At the very start of the impulsive phase of two solar flares the temperature derived from medium-energy ( 16 keV) X-ray countrates was observed to rise abruptly, by several times 107 K above the temperature derived from low-energy X-ray ( 7 keV) countrates. The difference between the two temperatures relaxed to zero thereafter, quasi-exponentially, with a characteristic time of 1.5 min. This differential temperature variation appears to mimique the differences between the ionic kinetic and the electron temperatures derived from spectral observations (Figures 1 and 2).These observations are explained in a quantitatively supported model of the flare kernel (Figure 4) in which the kernel is heated by electron beams from above. The low-energy electrons are stopped above the kernel and only the medium and high energy electrons penetrate down to the top of the chromosphere, causing heating of the chromospheric gas to about 50 MK, and ablation (evaporation), leading to the abrupt formation of a superhot flare kernel and a likely superhot dome above it (Figure 4), through which gas rises up and spreads out convectively, while cooling down in approximately the same time (45 s). The heating process lasts only for a few minutes. The difference between the Doppler temperature and the electron temperature derived from line intensity ratios or from low energy countrate ratios is ascribed to truncation of the tail of the electron energy distribution in the kernel. The kernel is about 2500 km deep; H emission is radiated by a thin layer at its basis.  相似文献   

17.
N. Vilmer 《Solar physics》1987,111(1):207-223
Solar hard X-ray emission is one of the most direct diagnostics of accelerated particles during solar flares. In this review, the current understanding of hard X-ray emission processes is discussed: first the different emission mechanisms (in particular inverse Compton radiation, energetic ion or electron bremsstrahlung) are presented and the plausibility of each of these mechanisms is discussed. Then, different types of hard X-ray models (thermal or non-thermal, homogeneous or inhomogeneous emission regions) are presented together with the comparison of their predictions with X-ray observations (spectral, spatial and temporal informations - directivity and polarization).Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

18.
Ionization and recombination processes are studied for a plasma of which the electrons follow a power-law energy distribution.The rates for collisional ionization, radiative and dielectronic recombination and for autoionization are evaluated.Numerical computations are performed for H-like, He-like and Li-like ions from neon to nickel as a function of the spectral index of the electron distribution. The ionization equilibrium is evaluated as well as the ratios of fluxes emitted in two lines pertaining to two successive ionization stages of the same element. A comparison with a few experimental data is made and the possibility of a non-thermal interpretation of X-ray line emission during solar flares is discussed.  相似文献   

19.
The relationship between the production of -ray emitting particles and non-thermal soft X-ray line broadening is investigated. A model of particle acceleration via the stochastic interaction with MHD turbulence is assumed and the time development of the wave energy density derived under the condition of energy conservation between waves and particles. The inferred numbers and energy distribution of accelerated protons for four -ray flares are used to define the wave energy density and its temporal development. The presence of Alfvén wave turbulence is considered as the source of the non-thermal motions in the ambient plasma. These motions are observed as excess widths in the soft X-ray line emission from these events. The decay of the waves via the particle acceleration process is compared with the observed decays of this non-thermal line broadening. Our results show that both the -ray emission and excess soft X-ray line widths in these flares can be explained by the single physical phenomenon of Alfvén wave turbulence.  相似文献   

20.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号