首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, an integrand adaptive-robust approach along with a smooth adaptive-robust friction compensation strategy are applied to tracking control of robot manipulators with joint stick-slip friction. The designed controller takes advantage of both adaptive and robust approaches. It has the ability to learn and the ability to reject disturbance and to handle various uncertainties including stick-slip friction. The uncertainties due to unknown robot link parameters, unknown viscous friction coefficient, and unknown maximum static friction, which are linear in parameters, are compensated by the integrated adaptive-robust control method. On the other hand, the exponential friction (used to model the Stribeck effect: the downward bend of friction torque at low velocities), which are nonlinear in parameters, and external disturbances, are compensated by a robust compensator with a self-learning upper bounding function when no a priori knowledge on the exponential friction and disturbances are available. The employed robust compensators produce smooth control action, and avoid motion intermittency, which are commonly associated with stick-slip friction. The proposed controller guarantees global asymptotic stability of the closed-loop system, as proved by Lyapunov's direct method. © 1998 John Wiley & Sons, Inc.  相似文献   

2.
二自由度自激振荡系统中由摩擦引起的粘滑运动具有复杂性,其产生机理及调控方式有重要的学术和工程应用价值。重点探讨了二自由度自激振荡系统中阻尼对粘滑运动的影响,对摩擦的不连续性采取光滑连续处理,应用改进型Hénon算法对系统方程进行数值求解,并根据庞加莱图对系统运动状态和特性进行确认。研究发现:保持系统其他参数不变,由小到大调节阻尼,滑块的运动依次出现混沌粘滑、周期粘滑、周期滑动和阻滑4种状态;混沌粘滑-周期粘滑、周期粘滑-周期滑动为渐变过程,而周期滑动-阻滑为突变过程,其中突变行为对阻尼的变化相当敏感,当阻尼从2.501变为2.502时系统运动状态发生了临界转变。初步探明了阻尼对自激振荡系统运动状态和粘滑行为的作用规律,结果将为粘滑运动调控及阻尼自适应控制提供理论指导。  相似文献   

3.
Important aspects of present-day humanoid robot research is to make such robots look realistic and human-like, both in appearance, as well as in motion and mannerism. In this paper, we focus our study on advanced control leading to realistic motion coordination for a humanoid’s robot neck and eyes while tracking an object. The motivating application for such controls is conversational robotics, in which a robot head “actor” should be able to detect and make eye contact with a human subject. Therefore, in such a scenario, the 3D position and orientation of an object of interest in space should be tracked by the redundant head–eye mechanism partly through its neck, and partly through its eyes. In this paper, we propose an optimization approach, combined with a real-time visual feedback to generate the realistic robot motion and robustify it. We also offer experimental results showing that the neck–eye motion obtained from the proposed algorithm is realistic comparing to the head–eye motion of humans.  相似文献   

4.
为实现微小型机器人的精密运动定位,提出一种基于粘滑运动原理的足式微小型机器人.机器人足由双压电膜驱动,本身为空间不等截面的弹性梁结构.首先建立了柔性足的有限自由度模型和机器人系统的动力学模型.然后根据粘滑驱动中的粘滞和滑移过程的不同特点,分别对粘滞过程的静力学与滑移过程的瞬态动力学进行了分析,得到了机器人运动位移、分辨力与驱动电压之间的关系,并分析了粘滞-滑移过程中摩擦力的变化以及足尖的状态切换过程.分析结果表明,在粘滞阶段,基体的静态位移与驱动电压近似呈线性关系,且随驱动电压的增高而增大;在滑移阶段,由于柔性足的振动及振动与摩擦力的耦合关系,足端的滑移距离及基体位移与驱动电压之间存在非线性关系.建立了机器人样机,对机器人的运动分辨力和位移响应进行了测试,实验数据显示,基于粘滑运动原理,机器人可以实现0.88μm的高运动分辨力.  相似文献   

5.
In this paper a new approach employing smooth robust compensators is proposed for the control of uncertain elastic-joint robot manipulators during contact tasks. It is assumed that the flexible-joint manipulators consist of two subsystems: the rigid subsystem and the flexible subsystem. The output of the flexible subsystem is assumed to be the input of the rigid subsystem. The control design is carried out in two steps. First, a desired input is designed for the rigid subsystem, which can robustly stabilize it. Second, a robust controller is designed to stabilize the flexible subsystem so that it generates the necessary torque designed for the rigid subsystem. By using this approach, the robot manipulator can exert a preset amount of force on the environment while tracking a desired trajectory with global asymptotic stability. Lyapunov's direct method is used here to prove the global asymptotic stability of the closed-loop system. The assumption of weak joint elasticity is relaxed and exact knowledge of joint stiffness is not required for the control design. Also, exact knowledge of robot kinematic and dynamic parameters and actuator parameters are not required. Unlike other approaches, this approach takes the environmental stick-slip friction as well as its dependency on normal contact force into consideration. It compensates for the adverse effects of the stick-slip friction. The proposed controller produces a smooth control action, and ensures smooth motion on the contact surface. The efficacy of the proposed controller is illustrated with the help of a numerical example of a two-link flexible-joint robot. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
The synthesis control problem for the plane motion of a wheeled robot with constrained control resource is studied. The goal of the control is to bring the robot to an assigned curvilinear trajectory and to stabilize its motion along it. A new change of variable is suggested that reduces the problem of stabilizing robot’s motion to that of stabilizing the zero solution in the form that admits feedback linearization. A control law stabilizing robot’s motion along an arbitrary curvilinear target trajectory is synthesized. For a straight target path, the closed-loop system is shown to be asymptotically stable for any initial conditions except for the case where the initial direction of motion is perpendicular to the target path.  相似文献   

7.
Stick-slip friction is a major cause of drill-string failure. This paper addresses the problem of suppressing stick-slip induced oscillations in oil well drill strings using a control design technique known as μ-synthesis. This technique allows for the inclusion of modeling errors in the control design process in terms of uncertainty weights. The dynamic model of the drill string with stick-slip friction is highly nonlinear and has to be linearized around an operating point in order to use μ-synthesis. The difference between the linear and nonlinear models is characterized in terms of uncertainty weights and included in the control design process. The designed controllers are robust to uncertainty in the dynamic model, spillover, actuator uncertainty, and noise. Two controllers were designed using μ-synthesis and the simulation results are presented and discussed here. The first controller assumes no measurement delay; however, the second controller includes a sensor time delay in the measurements. Both controllers are robust and performed well.  相似文献   

8.
The presence of friction in mechanical motion systems is a performance limiting factor as it induces stick-slip vibrations. To appropriately describe the stiction effect of friction, we adopt set-valued force laws. Then, the complete motion control system can be described by a Lur’e system with set-valued nonlinearities. In order to eliminate stick-slip vibrations for mechanical motion systems, a state-feedback control design is presented to stabilize the equilibrium. The proposed control design is based on an extension of a Popov-like criterion to systems with set-valued nonlinearities that guarantees input-to-state stability (ISS). The advantages of the presented controller is that it is robust to uncertainties in the friction and it is applicable to systems with non-collocation of actuation and friction where common control strategies such as direct friction compensation fail. Moreover, an observer-based output-feedback design is proposed for the case that not all the state variables are measured. The effectiveness of the proposed output-feedback control design is shown both in simulations and experiments for a typical motion control system.  相似文献   

9.
Force-free control produces motion in a robot arm as if it were under conditions with no gravity and no friction. In this study, a method of force-free control is proposed for industrial articulated robot arms. The force-free control proposed was applied to the direct teaching of industrial articulated robot arms in that the robot arm was moved by direct human force. Generally, the teaching of industrial articulated robot arms is carried out using operational equipment called a teach-pendant. Smooth teaching can be achieved if direct teaching is applicable. The force-free control proposed enables humans to teach industrial articulated robot arms directly. The effectiveness of force-free control was confirmed by experimental work on an articulated robot arm with two degrees of freedom. This work was presented in part at the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, January 26–28, 2000  相似文献   

10.
The independent administrative corporation Japan Agency for Marine–Earth Science and Technology (JAMSTEC) has developed a small light autonomous underwater vehicle (AUV) named marine robot experimental 1 (MR-X1).1 The motion control of MR-X1 is considered in this article. Since the dynamics of MR-X1 mainly depends on its own speed, the motion control is a nonlinear control system. We propose a new controller design method for this system using linear matrix inequalities (LMIs). This algorithm gives a solution as a linear matrix inequality, and can be adapted to solve many LMIs simultaneously. LMIs can be obtained by substituting several speeds into the dynamics of the MR-X1. The proposed controller, which can be derived from the solution of the LMIs, was adapted to MR-X1 and showed good performance in experiments. This work was presented in part at the 11th International Symposium on Artificial Life and Robotics, Oita, Japan, January 23–25, 2006  相似文献   

11.
为了保证机器人能够在保持稳定的情况下,按照规划轨迹执行工作任务,从硬件和软件两个方面,设计了基于Sigmoid函数的机器人鲁棒滑模跟踪控制系统。装设机器人传感器与状态观测器,改装机器人鲁棒滑模跟踪控制器,完成系统硬件设计;综合机器人结构、运动机理和动力机制3个方面,构建机器人数学模型;根据状态数据采集结果与规划轨迹之间的偏差,计算机器人跟踪控制量;依据滑模运动与切换方程,利用Sigmoid函数生成机器人鲁棒滑模控制律,将生成控制指令作用在机器人执行元件上,实现系统的鲁棒滑模跟踪控制功能;在系统测试与分析中,所设计控制系统的平均位置跟踪控制误差为0.93 mm,与设定轨迹目标基本重合,机器人姿态角跟踪控制误差为0.06 mm,具有较好的鲁棒滑模跟踪控制效果,能够有效提高机器人鲁棒滑模跟踪控制精度。  相似文献   

12.
A control synthesis problem for a wheeled robot moving on uneven terrain is studied. The terrain is assumed to be described by a sufficiently smooth function that does not vary too much at distances of the order of the platform size, which makes it possible to employ a planar robot model. The terrain model is not a priori known, and the information on the local terrain configuration is made available for the robot through measuring its pitch and roll angles. The control goal is to bring the robot to a given curvilinear path and to stabilize robot’s motion along it. A change of variables is found by means of which the system of differential equations governing controlled motion of the robot reduces to the form that admits feedback linearization. A numerical example presented demonstrates advantages of the synthesized control compared to that derived without regard to the terrain unevenness. It is shown that the latter is generally not capable of stabilizing robot’s motion with a desired accuracy.  相似文献   

13.
We are proposing an underwater robot for the work. In this study, we designed the robot, which has body of rectangular plane and 4 legs at each corner. The leg is consisted with parallel mechanism of 2or3 cylinders, and the end of each cylinder is attached on the robot body with free rotational joint and the end of both piston rods are connected with pin joint. 2 cylinder leg’s motion is restricted in forward or backward direction but 3 cylinder leg can move any direction. We are studying the control scheme of walking for this robot, which is putting mind especially on smooth and steady movement without rolling, pitching, yawing or heaving motion and keeping the body horizontally. We confirmed the validity of control scheme with simulation and experiments.  相似文献   

14.
This paper investigates how dynamics in recurrent neural networks can be used to solve some specific mobile robot problems such as motion control and behavior generation. We have designed an adaptive motion control approach based on a novel recurrent neural network, called Echo state networks. The advantage is that no knowledge about the dynamic model is required, and no synaptic weight changing is needed in presence of time varying parameters in the robot. To generate the robot behavior over time, we adopted a biologically inspired approach called neural fields. Due to its dynamical properties, a neural field produces only one localized peak that indicates the optimum movement direction, which navigates a mobile robot to its goal in an unknown environment without any collisions with static or moving obstacles.  相似文献   

15.
We have developed a playmate robot system for playing the rock-paper-scissors game with humans. The playmate robot recognizes the hand motions of a human using image processing without attaching any additional units to the human. The playmate robot system consists of three parts: a game management part, a hand motion recognition part, and a robot hand control part. The system functions as follows. (1) Before the game is played, the game management part decides on the motion of the robot hand from amongst rock, paper, and scissors. After the game is played, the robot develops a reaction using speech and facial expressions depending on the result of the game. (2) The hand motion recognition part recognizes the hand motion of the human. It does not use any additional units on the human’s body, only a camera on the robot. (3) The robot hand control part shows the motion of the robot hand. A robot hand has four fingers that are controlled independently. We have played the rock-paper-scissors game with this playmate robot.  相似文献   

16.
Vibration mechanism is good candidates to be used as actuation system in small robots. However, mini fabrication of small electrical and mechanical drives is a challenging issue. Moreover, no analytical model for motion analysis of vibration driven robots is devised. In this paper, a small robot is developed. To setup a low-cost robot, cell phone vibrators are employed as actuation mechanism. Motion principle of the robot is analytically obtained and appropriate mechanical and electronic derives are designed. Some technical tips are employed to reduce the size of the robot. The obtained model was evaluated by simulations in MSC.ADAMS as well as some standard experiments on a real robot named Rizeh. Moreover, the robot is tested in a line following task, as a typical task for mobile robots.  相似文献   

17.
《Advanced Robotics》2013,27(5-6):689-709
This paper presents the development of a compact laparoscopic assistant robot. The robot was designed to increase convenience and reduce possible interference with surgical staff by confining the majority of motions inside the abdomen. Its size was miniaturized as much as possible for convenient handling. A bending mechanism composed of several articulated joints was introduced to produce motions inside the abdomen. The proposed assistant robot can generate 3-DOF motion, including 2-DOF internal bending motion and 1-DOF external linear motion. Since the robot itself functions as a laparoscope, a small CCD camera module and a bundle of optical fibers were integrated as part of the system. For accurate control, mathematical modeling of the bending mechanism and a method of hysteresis compensation were introduced and implemented. For the control of the robot, a voice interface and a visual-servoing method were implemented. The performance of the developed system was tested through solo-surgery of in vivo porcine cholecystectomy. It was found that the views generated by the bending mechanism were sufficient throughout the surgery. Since the robot has functions comparable to the previously developed systems, while retaining its compactness, it is expected to be a useful device for human cholecystectomy.  相似文献   

18.
《Advanced Robotics》2013,27(1-2):75-91
New dynamic rolling-walk motion for a multi-legged robot with error compensation is proposed. The motion is realized by using the isotropic leg arrangement and the dynamic center of mass control inspired by bipedal robots. By using the preview control of the zero moment point (ZMP) with a cart-table model based on the bipedal robot's technique, the robot's center of mass trajectory is planned for the dynamic motion. The resolved momentum control for manipulating the multi-links robot as a single mass model is also implemented in the system to maintain the stability of the robot. In the new dynamic rolling-walk motion, the robot switches between the two-leg supporting phase and three-leg supporting phase to achieve dynamic motion with the preview control of the ZMP and resolved momentum control as dynamic motion controllers. The authors analyzed the motion and confirmed the feasibility in the Open Dynamics Engine before testing the motion with an actual robot. Due to the difficulties of controlling the ZMP during the two-leg supporting phase, the authors implemented error compensation by using a gyro sensor and compared the results.  相似文献   

19.
Chian-Song  Kuang-Yow  Tsu-Cheng 《Automatica》2004,40(12):2111-2119
In the presence of uncertain constraint and robot model, an adaptive controller with robust motion/force tracking performance for constrained robot manipulators is proposed. First, robust motion and force tracking is considered, where a performance criterion containing disturbance and estimated parameter attenuations is presented. Then the proposed controller utilizes an adaptive scheme and an auxiliary control law to deal with the uncertain environmental constraint, disturbances, and robotic modeling uncertainties. After solving a simple linear matrix inequality for gain conditions, the effect from disturbance and estimated parameter errors to motion/force errors is attenuated to an arbitrary prescribed level. Moreover, if the disturbance and estimated parameter errors are square-integrable, then an asymptotic motion tracking is achieved while the force error is as small as the inversion of control gain. Finally, numerical simulation results for a constrained planar robot illustrate the expected performance.  相似文献   

20.
为了减小智能探测机器人运动轨迹误差,实现精准控制,提高智能探测机器人运动控制效率,设计基于大数据聚类的智能探测机器人运动控制系统;采用TMS320LF2407A主控芯片,集成650 V功率管,在电感电流断续模式下工作,提供系统驱动能量,设置光电耦合器,处理控制信号发射,调整控制电路内部电流关系;选用6ES7214-1AG40-0XB0控制器以及信号和通信模块扩展,控制机器人运动轨迹,结合内部驱动装置,整合运动数据信息进行存储,实现运动控制系统硬件结构设计;通过调节程序开始数据,结合内部脉冲数据,构建软件平台管理模块,获取机器人运动轨迹数据;采用大数据聚类技术,建立控制系统大数据分布结构模型,模拟非线性时变LFM控制信号,提取特征并聚类运动轨迹数据,获取精准运动轨迹数据,减少运动轨迹偏差程度,完成运动控制系统软件设计;实验结果表明,基于大数据聚类的运动控制系统的运动轨迹误差较小,能够有效实现精准控制,提高运动控制效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号