首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermostable glycerol kinase (FGK) was purified 34-fold to homogeneity from Flavobacterium meningosepticum. The molecular masses of the enzyme were 200 kDa by gel filtration and 50 kDa by SDS-PAGE. The Km for glycerol and ATP were 0.088 and 0.030 mM, respectively. The enzyme was stable at 65 degrees C for 10 min and at 37 degrees C for two weeks. The enzyme gene was cloned into Escherichia coli and its complete DNA was sequenced. The FGK gene consists of an open reading frame of 1494-bp encoding a protein of 498 amino acids. The deduced amino acid sequence of the gene had 40-60% similarity to those of glycerol kinases from other origins and the amino acid sequence of the putative active site residue reported for E. coli GK is identical to the corresponding sequence of FGK except for one amino acid residue.  相似文献   

2.
The fadH gene coding for an NADPH-dependent 2.4-dienoyl-CoA reductase from Escherichia coli has been cloned by the polymerase chain reaction. This gene is located at 67.65 min on the E. coli chromosome. The complete open reading frame contains 2019 bp coding for the processed protein of 671 amino acid residues, with a calculated molecular mass of 72.55 kDa, which lacks the N-terminal methionine. Construction and expression of the plasmid pNDH, which contained the fadH gene under the control of the T7 promoter, resulted in a 110-fold increase in the reductase activity above the level detected in E. coli cells containing the control vector. The kinetic parameters of the purified reductase were determined to be 50 microM and 2.3 microM for the Km values of NADPH and 2-trans, 4-trans-decadienoyl-CoA, respectively, and 16 s(-1) for the k(cat) value. Analysis of the kinetic data revealed that the reaction catalyzed by this enzyme proceeds via a ping-pong mechanism. The observed dissimilarity between the E. coli and mammalian 2,4-dienoyl-CoA reductase sequences suggests that they have evolved from distinct ancestral genes. Sequence analysis also suggests that the N-terminal part of the E. coli reductase contains the FAD-binding domain whereas the NADPH-binding domain is located in the C-terminal region of the protein.  相似文献   

3.
The sequence of 1,787 nucleotides (nts) in the genomic RNA of pelargonium leaf curl virus (PLCV) was determined. It included the entire coat protein (cp) gene (nts 585 to 1,754), 558 nts of the 3' end of the putative RNA polymerase gene, 26 nts of an intercistronic region between the two genes and 33 nts downstream of the stop codon of the cp gene. The cp gene was cloned into the expression vector pET8c and expressed in E. coli. The deduced cp amino acid sequence of PLCV was compared with those of five other tombusviruses. The closer the degree of serological relatedness between two viruses, the more similarity was found in their cp amino acid sequences not only in the protruding domains, but also in their random and shell domains and in the arm regions. Nucleic acid hybridization tests, cp amino acid comparisons and serological tests all suggest the same order of sequence for the relationships in the tombusvirus group.  相似文献   

4.
We have isolated dextran-aggregation-negative mutants of Streptococcus mutans following random mutagenesis with plasmid pVA891 clone banks. A chromosomal region responsible for this phenotype was characterized in one of the mutants. A 2.2-kb fragment from the region was cloned in Escherichia coli and sequenced. A gene specifying a putative protein of 583 amino acid residues with a calculated molecular weight of 63,478 was identified. The amino acid sequence deduced from the gene exhibited no similarity to the previously identified S. mutans 74-kDa glucan-binding protein or to glucan-binding domains of glucosyltransferases but exhibited similarity to surface protein antigen (Spa)-family proteins from streptococci. Extract from an E. coli clone of the gene exhibited glucan-binding activity. Therefore, the gene encoded a novel glucan-binding protein.  相似文献   

5.
The ATF2 gene, which encodes alcohol acetyltransferase II (AATase II), was cloned from Saccharomyces cerevisiae Kyokai No. 7 (sake yeast). The ATF2 gene coded for a protein of 535 amino acid residues with a calculated molecular mass of 61,909 daltons. The deduced amino acid sequences of the ATF2 showed 36.9% similarity with that of ATF1, which encodes AATase I. The hydrophobicity profiles for the Atf2 protein and Atf1 protein were similar. A transformant carrying multiple copies of the ATF2 gene had 2.5-fold greater AATase activity than the control, and this activity was not significantly inhibited by linoleic acid. A Southern analysis of the yeast genomes in which the ATF2 gene was used as a probe showed that S. cerevisiae and brewery larger yeast have one ATF2 gene, while S. bayanus has no similar gene.  相似文献   

6.
The gene (xynA) encoding a surface-exposed, S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 was cloned and expressed in Escherichia coli. A 3.8-kb fragment was amplified from chromosomal DNA by using primers directed against conserved sequences of endoxylanases isolated from other thermophilic bacteria. This PCR product was used as a probe in Southern hybridizations to identify a 4.6-kb EcoRI fragment containing the complete xynA gene. This fragment was cloned into E. coli, and recombinant clones expressed significant levels of xylanase activity. The purified recombinant protein had an estimated molecular mass (150 kDa), temperature maximum (80 degrees C), pH optimum (pH 6.3), and isoelectric point (pH 4.5) that were similar to those of the endoxylanase isolated from strain JW/SL-YS 485. The entire insert was sequenced and analysis revealed a 4,044-bp open reading frame encoding a protein containing 1,348 amino acid residues (estimated molecular mass of 148 kDa).xynA was preceded by a putative promoter at -35 (TTAAT) and -10 (TATATT) and a potential ribosome binding site (AGGGAG) and was expressed constitutively in E. coli. The deduced amino acid sequence showed 30 to 96% similarity to sequences of family F beta-glycanases. A putative 32-amino-acid signal peptide was identified, and the C-terminal end of the protein contained three repeating sequences 59, 64, and 57 amino acids) that showed 46 to 68% similarity to repeating sequences at the N-terminal end of S-layer and S-layer-associated proteins from other gram-positive bacteria. These repeats could permit an interaction of the enzyme with the S-layer and tether it to the cell surface.  相似文献   

7.
A fengycin synthetase gene, fenB, has been cloned and sequenced. The protein (FenB) encoded by this gene has a predicted molecular mass of 143.6 kDa. This protein was overexpressed in Escherichia coli and was purified to near homogeneity by affinity chromatography. Experimental results indicated that the recombinant FenB has a substrate specificity toward isoleucine with an optimum temperature of 25 degrees C, an optimum pH of 4.5, a Km value of 922 microM, and a turnover number of 236 s(-1). FenB also consists of a thioesterase domain, suggesting that this protein may be involved in the activation of the last amino acid of fengycin.  相似文献   

8.
We cloned and expressed in Escherichia coli a gene encoding an 18-kDa outer membrane protein (Omp18) from Campylobacter jejuni ATCC 29428. The nucleotide sequence of the gene encoding Omp18 was determined, and an open reading frame of 165 amino acids was revealed. The amino acid sequence had the typical features of a leader sequence and a signal peptidase II cleavage site at the N-terminal part of Omp18. Moreover, the sequence had a high degree of similarity to the peptidoglycan-associated outer membrane lipoprotein P6 of Haemophilus influenzae and the peptidoglycan-associated lipoprotein PAL of E. coli. Southern blot analysis in which the cloned gene was used as a probe revealed genes similar to that encoding Omp18 in all species of the thermophilic group of campylobacters as well as Campylobacter sputorum. All campylobacters tested expressed a protein with a molecular mass identical to that of Omp18. The protein reacted immunologically with polyclonal antibodies directed against Omp18 from C. jejuni. PCR amplification of the gene encoding Omp18 with specific primers and subsequent restriction enzyme analysis of the amplified DNA fragments showed that the gene for Omp18 is highly conserved in C. jejuni strains isolated from humans, dogs, cats, calves, and chickens but is different in other Campylobacter species. In order to obtain pure recombinant Omp18 protein for serological assays, the cloned gene for Omp18 was genetically modified by replacing the signal sequence with a DNA segment encoding six adjacent histidine residues. Expression of this construct in E. coli allowed purification of the modified protein (Omp18-6xHis) by metal chelation chromatography. Sera from patients with past C. jejuni infection reacted positively with Omp18-6xHis, while sera from healthy blood donors showed no reaction with this antigen. Omp18, which is an outer membrane protein belonging to the family of PALs is well conserved in C. jejuni and is highly immunogenic. It is therefore a good candidate as an antigen for the serological diagnosis of past C. jejuni infections.  相似文献   

9.
2-Carboxybenzaldehyde dehydrogenase from the phenanthrene-degrading bacterium Nocardioides sp. strain KP7 was purified and characterized. The purified enzyme had a molecular mass of 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 205 kDa by gel filtration chromatography. Thus, the homotetramer of the 53-kDa subunit constituted an active enzyme. The apparent Km and kcat values of this enzyme for 2-carboxybenzaldehyde were 100 microM and 39 s(-1), respectively, and those for NAD+ were 83 microM and 32 s(-1), respectively. The structural gene for this enzyme was cloned and sequenced. The length of the gene was 1,455 bp. The nucleotide sequence of the 10,279 bp of DNA around the gene for 2-carboxybenzaldehyde dehydrogenase was also determined, and seven open reading frames were found in this DNA region. These were the genes for 1-hydroxy-2-naphthoate dioxygenase (phdI) and trans-2'-carboxybenzalpyruvate aldolase (phdJ), orf1, the gene for 2-carboxybenzaldehyde dehydrogenase (phdK), orf2/orf3, and orf4. The amino acid sequence of the orf1 product was similar to that of the aromatic hydrocarbon transporter gene (pcaK) in Pseudomonas putida PRS2000. The amino acid sequence of the orf4 product revealed a similarity to cytochrome P-450 proteins. The region between phdK and orf4 encoded orf2 and orf3 on different strands. The amino acid sequences of the orf2 and orf3 products exhibited no significant similarity to the reported sequences in protein databases.  相似文献   

10.
The recA gene of a thermophilic eubacterial strain, Thermus thermophilus (T.th.) HB8, was cloned from a genomic DNA library by Southern hybridization using a gene-internal fragment amplified by the polymerase chain reaction (PCR) method as the probe. The gene encoded a 36 kDa polypeptide whose amino acid sequence showed 61% identity with that of the Escherichia coli RecA protein. Characteristic amino acid changes between the two RecA proteins were found. In the amino acid composition of the T.th. RecA protein, the number of Pro residues was increased, the number of Cys residues was decreased, and Lys residues were replaced by Arg, Asp by Glu, Thr by Val, and Ile by Val or Leu. These changes are supposed to stabilize the native protein conformation against heat denaturation. The amino acid residues in the nucleotide binding site of the protein and in the protein-protein interaction site responsible for the oligomer formation were well conserved. The T.th. recA gene has the ability to complement the ultraviolet light (UV) sensitivity of a E. coli recA deletion mutant. Thus, the thermophilic bacterium has a RecA protein whose function will be common to the E. coli RecA protein.  相似文献   

11.
The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme. The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa. An identical epoxide hydrolase gene was cloned from chromosomal DNA of the closely related strain A. radiobacter CFZ11. The recombinant epoxide hydrolase was expressed up to 40% of the total cellular protein content in Escherichia coli BL21(DE3) and the purified enzyme had a kcat of 21 s-1 with epichlorohydrin. Amino acid sequence similarity of the epoxide hydrolase with eukaryotic epoxide hydrolases, haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, and bromoperoxidase A2 from Streptomyces aureofaciens indicated that it belonged to the alpha/beta-hydrolase fold family. This conclusion was supported by secondary structure predictions and analysis of the secondary structure with circular dichroism spectroscopy. The catalytic triad residues of epoxide hydrolase are proposed to be Asp107, His275, and Asp246. Replacement of these residues to Ala/Glu, Arg/Gln, and Ala, respectively, resulted in a dramatic loss of activity for epichlorohydrin. The reaction mechanism of epoxide hydrolase proceeds via a covalently bound ester intermediate, as was shown by single turnover experiments with the His275 --> Arg mutant of epoxide hydrolase in which the ester intermediate could be trapped.  相似文献   

12.
The cpxA gene of Escherichia coli K-12 encodes a membrane-associated sensor element of a two-component signal transduction system in bacteria. The cognate regulator element, however, has not yet been definitively identified. A 2.1-kb segment upstream from cpxA was amplified by polymerase chain reaction, cloned and sequenced. An open reading frame encoding 232 amino acids was found. It showed high homology to the regulator elements of two-component transduction systems. The newly identified gene, designated as cpxR, may encode the cognate protein receiving signals from CpxA.  相似文献   

13.
14.
The acylneuraminate lyase gene from Clostridium perfringens A99 was cloned on a 3.3 kb HindIII DNA fragment identified by screening the chromosomal DNA of this species by hybridization with an oligonucleotide probe that had been deduced from the N-terminal amino acid sequence of the purified protein, and another probe directed against a region that is conserved in the acylneuraminate lyase gene of Escherichia coli and in the putative gene of Clostridium tertium. After cloning, three of the recombinant clones expressed lyase activity above the background of the endogenous enzyme of the E. coli host. The sequenced part of the cloned fragment contains the complete acylneuraminate lyase gene (ORF2) of 864 bp that encodes 288 amino acids with a calculated molecular weight of 32.3 kDa. The lyase structural gene follows a noncoding region with an inverted repeat and a ribosome binding site. Upstream from this regulatory region another open reading frame (ORF1) was detected. The 3'-terminus of the lyase structural gene is followed by a further ORF (ORF3). A high homology was found between the amino acid sequences of the sialate lyases from Clostridium perfringens and Haemophilus influenzae (75% identical amino acids) or Trichomonas vaginalis (69% identical amino acids), respectively, whereas the similarity to the gene from E. coli is low (38% identical amino acids). Based on our new sequence data, the 'large' sialidase gene and the lyase gene of C. perfringens are not arranged next to each other on the chromosome of this species.  相似文献   

15.
Genes for the 290 amino acid, 33-34 kDa cytosolic acetyltransferases (NAT1* and NAT2*) from rat and hamster were cloned and expressed in Escherichia coli. Active clones were selected by a simple visual test for their ability to decolorize 4-aminoazobenzene in bacterial medium by acetylation. These recombinant acetyltransferases were analyzed for: (i) N-acetyltransferase, which was assayed by the rate of acetyl coenzyme A-dependent N-acetylation of 2-aminofluorene (2-AF) or 4-aminoazobenzene (AAB); (ii) arylhydroxamic acid acyltransferase, assayed by N,O-acyltransfer with N-hydroxy-N-acetyl-2-aminofluorene. Both NAT2s showed first order increases in N-acetylation rates with increasing 2-AF or AAB concentrations between 5 and 100 microM, with apparent K(m) values of 22-32 and 62-138 microM respectively. Although under the same conditions the N-acetylation rates for the two NAT1s declined by > 50%, below 5 microM 2-AF or AAB, the NAT rate data fit Michaelis-Menten kinetics, and the apparent K(m) values were 0.2-0.9 microM. For N,O-acyltransferase, the apparent K(m) values of the NAT1s were approximately 6 microM, while the K(m) values of the NAT2s were approximately 20- to 70-fold higher. SDS-PAGE/Western blot analysis of the recombinant acetyltransferases gave apparent relative molecular weights (MWr) of approximately 31 kDa for both NAT1s and rat NAT2 and approximately 29 kDa for hamster NAT2. Comparable MWr values were observed for native hamster liver NAT1 and NAT2 and for rat NAT1 under the same conditions. Although we did not detect NAT2-like activity in rat liver cytosol previously, the present data show that the rat NAT2* gene does code for a functional acetyltransferase, with properties similar to those of hamster liver NAT2. The data also indicate that at low substrate concentrations, NAT1 would apparently play the predominant role in vivo in N-acetylation and N,O-acyltransfer of aromatic amine derivatives, including their metabolic activation to DNA-reactive agents.  相似文献   

16.
Two new RNase inhibitors, SaI14 (Mr, approximately 14,000) and SaI20 (Mr, approximately 20,000), were isolated and purified from a Streptomyces aureofaciens strain. The gene sai14, coding for SaI14 protein, was cloned and expressed in Escherichia coli. The alignment of the deduced amino acid sequence of SaI14 with that of barstar, the RNase inhibitor from Bacillus amyloliquefaciens, showed significant similarity between them, especially in the region which contains most of the residues involved in barnase-barstar complex formation.  相似文献   

17.
The spi gene of Streptococcus pneumoniae was cloned and its nucleotide sequence was determined. It encodes a protein of 204 amino acids that is homologous to bacterial signal peptidase I proteins. The S. pneumoniae protein contains all of the conserved amino acid sequence motifs previously identified in this enzyme from both prokaryotic and eukaryotic sources. Sequence comparisons revealed several additional motifs characteristic of the enzyme. The cloned S. pneumoniae gene complemented an Escherichia coli mutant defective in its leader peptidase gene. Expression of the spi gene in S. pneumoniae appeared to be essential for viability. The cloned gene was shown to produce a polypeptide of approximately 20 kDa. Overproduction of the S. pneumoniae spi gene in an E. coli expression system gave a native protein product, soluble in the presence of a non-ionic detergent, which should be amenable to structural determination.  相似文献   

18.
Surface receptors for plasminogen are expressed by many gram-positive and gram-negative bacteria and may play a role in the dissemination of organisms by binding plasminogen, which upon conversion to plasmin can digest extracellular matrix proteins. Two plasminogen binding proteins have been identified for Borrelia burgdorferi, outer surface protein A and a 70-kDa protein (BPBP). We purified BPBP by plasminogen affinity chromatography and obtained its amino acid sequence by Edman degradation of a tryptic digest. The gene coding for BPBP was isolated from a lambda-ZAP II genomic library with probes developed from sequenced portions of the protein. This gene was expressed in Escherichia coli; the recombinant product was seen by antibody raised against native BPBP and also bound 125I-labeled plasminogen. The experimentally derived amino acid sequences corresponded to the predicted sequence encoded by the BPBP gene. The deduced amino acid sequence for BPBP revealed significant similarity to p30, a 30-kDa protein of B. burgdorferi (54% identity and 65% similarity), to a 60-kDa protein in Borrelia coriaceae (66% identity and 80% similarity), to oligopeptide binding protein A of E. coli (34% identity and 57% similarity), and, more generally, to the periplasmic oligopeptide binding family of proteins.  相似文献   

19.
The enzyme O6-methylguanine-DNA methyltransferase (MGMT) is the most common form of cellular defense against the biological effects of O6-methylguanine (O6-MeG) in DNA. Based on PCR amplification using primers derived from conserved amino acid sequences of MGMTs from 11 species, we isolated the DNA region coding for MGMT from the hyperthermophilic archaeon Pyrococcus sp. KOD1. The MGMT gene from KOD1 (mgtk) comprises 522 nucleotides, encoding 174 amino acid residues; its product shows considerable similarity to the corresponding mammalian, yeast and bacterial enzymes, especially around putative methyl acceptor sites. Phylogenetic analysis of MGMTs showed that archaeal MGMTs were grouped with their bacterial counterparts. The location of the MGMT gene on the KOD1 chromosome was also determined. The cloned KOD1 MGMT gene was overexpressed using the T7 RNA polymerase expression system, and the recombinant protein was purified by ammonium sulfate fractionation, heat treatment, ion-exchange chromatography and gel filtration chromatography. The purified recombinant protein was assayed for its enzyme activity by monitoring transfer of [3H]methyl groups from the substrate DNA to the MGMT protein; the activity was found to be stable at 90 degrees C for at least 30 min. When the mgtk gene was placed under the control of the lac promoter and expressed in the methyltransferase-deficient Escherichia coli strain KT233 (delta ada, delta ogt) cells, a MGMT was produced. The enzyme was functional in vivo and complemented the mutant phenotype, making the cells resistant to the cytotoxic properties of the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine.  相似文献   

20.
A NAD-dependent mannitol dehydrogenase (MtlD) was purified to homogeneity from P. fluorescens DSM50106 and the N-terminal amino acid sequence was determined. An oligonucleotide deduced from this peptide sequence was used as a probe to isolate the mannitol dehydrogenase gene (mtlD) from a genomic library of P. fluorescens. Nucleotide sequence analysis of a 1.8 kb NruI fragment containing the entire mtlD gene revealed an open reading frame of 1482 bp encoding a protein with a calculated molecular weight of 54.49 kDa. The enzyme shared a high similarity with a mannitol dehydrogenase from Rhodobacter sphaeroides and a putative mannitol dehydrogenase of Saccharomyces cerevisae with an overall identity in amino acid sequence of 44% and 42%, respectively, whereas the similarity to mannitol-1-phosphate dehydrogenases of Escherichia coli or Enterococcus faecalis was only about 23% of identical amino acids. By construction of inducible expression plasmids the specific activity of the mannitol dehydrogenase synthesized in E. coli was increased from 0.02 U (mg protein)(-1) to 10 U (mg protein)(-1). After fusion of six histidine codons to the 3' end of mtlD gene and expression in E. coli active mannitol dehydrogenase could be purified in a two-step procedure by affinity chromatography using a Ni2+ matrix column. The purified enzyme exhibited a specific activity of 46 U (mg protein)(-1) and was shown to be a polyol dehydrogenase with a broad substrate spectrum oxidizing efficiently mannitol, sorbitol and arabitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号