首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of O2 within the synthesis of phthalocyanines (Pcs) has remained unclear in the past century. Here, we demonstrate that O2, in cooperation with the solvent n‐pentanol, participates in the cyclic tetramerization of phthalonitriles over the half‐sandwich complex template [Lu(Pc)(acac)] (acac=acetylacetonate) and terminates the reaction at the stage of uncyclized isoindole oligomeric derivatives rather than the phthalocyanine chromophores, resulting in the isolation of the heteroleptic (phthalocyaninato)(triisoindole‐1‐one) lutetium double‐decker complexes [(Pc)Lu(TIO‐I)] (TIO‐I=3,4,7,8,11,12‐sexi(2,6‐diisopropylphenoxy)‐15‐[4,5‐di(2,6‐diisopropylphenoxy)‐2‐cyanobenzimidamido]triisoindole‐1‐one) and [(Pc)Lu(TIO‐II)] (TIO‐II=3,4,7,8,11,12‐sexi(2,6‐dimethylphenoxy)‐15‐[4,5‐di(2,6‐dimethylphenoxy)‐2‐cyanobenzimidamido]triisoindole‐1‐one) with the help of bulky substituents at the phthalonitrile periphery and an unsubstituted phthalocyanine ligand in the double‐decker skeleton. Nevertheless, the cyclic tetramerization of the phthalonitriles was revealed to be sensitive to O2 with the reaction progression also depending on the oxygen concentration/content, leading to the O2‐senstive and ‐dependent nature for the isolation of phthalocyanine derivatives.  相似文献   

2.
The effects of alkyloxy substituents attached to one phthalocyanine ligand of three heteroleptic bis(phthalocyaninato) yttrium complexes Y(Pc)[Pc(α‐OCH3)4] ( 1 ), Y(Pc)[Pc(α‐OCH3)8] ( 2 ), and Y(Pc)[Pc(β‐OCH3)8] ( 3 ), as well as their reduction products {Y(Pc)[Pc(α‐OCH3)4]}? ( 4 ), {Y(Pc)[Pc(α‐OCH3)8]}? ( 5 ), and {Y(Pc)[Pc(β‐OCH3)8]}? ( 6 ) [H2Pc(α‐OCH3)4=1,8,15,22‐tetrakis(methyloxy)phthalocyanine; H2Pc(α‐OCH3)8=1,4,8,11,15,18,22,25‐octakis(methyloxy)phthalocyanine; H2Pc(β‐OCH3)8=2,3,9,10,16,17,23,24‐octakis(methyloxy)phthalocyanine] are studied by DFT calculations. Good consistency is found between the calculated results and experimental data for the electronic absorption, IR, and Raman spectra of 1 and 3 . Introduction of electron‐donating methyloxy groups on one phthalocyanine ring of the heteroleptic double‐deckers induces structural deformation in both phthalocyanine ligands, electron transfer between the two phthalocyanine rings, changes in orbital energy and composition, shift of electronic absorption bands, and different vibrational modes of the unsubstituted and substituted phthalocyanine ligands in the IR and Raman spectra in comparison with the unsubstituted homoleptic counterpart Y(Pc)2. The calculations reveal that incorporation of methyloxy substituents at the nonperipheral positions has greater influence on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium double‐deckers than at the peripheral positions, which increases with increasing number of substituents. Nevertheless, the substituent effect of alkyloxy substituents at one phthalocyanine ligand of the double‐decker on the unsubstituted phthalocyanine ring and on the whole molecule and the importance of the position and number of alkyloxy substituents are discussed. In addition, the effect of reducing 1 – 3 to 4 – 6 on the structure and spectroscopic properties of the bis(phthalocyaninato) yttrium compounds is also discussed. This systemic DFT study is not only useful for understanding the structure and spectroscopic properties of bis(phthalocyaninato) rare earth metal complexes but also helpful in designing and preparing double‐deckers with tunable structure and properties.  相似文献   

3.
The infra-red (IR) spectroscopic data for a series of twelve sandwich-type homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(octyloxy)phthalocyaninato] rare earth(III)-cadmium(II) quadruple-decker complexes [Pc(OC8H17)8]M[Pc(OC8H17)8]Cd[Pc(OC8H17)8]M[Pc(OC8H17)8] (M = Y, Pr–Yb except Pm) have been collected with resolution of 2 cm−1 and their interpretation in terms tried by analogy with the IR characteristics of bis(phthalocyaninato) cerium double-decker [Pc(OC8H17)8]Ce[Pc(OC8H17)8] in which the macrocyclic ligands exist as the phthalocyanine dianion. Similar to the bis/tris(phthalocyaninato) rare earth sandwich counterparts, all the absorptions contributed primarily by or at least containing contribution from the vibrations of pyrrole or isoindole stretching, breathing or deformation or aza stretching in the IR spectra of these quadruple-decker compounds show dependent nature on the rare earth ionic size. The shift toward higher energy direction in the frequencies of these vibrations along with the decrease of the rare earth radii reveals the effective and increasing π–π interactions in these quadruple-decker sandwich compounds in the same order. Nevertheless, the decreased sensitivity of the frequencies of the above mentioned vibration modes in particular the weak absorption band due to the isoindole stretching at 1414–1416 cm−1 for the quadruple-decker on rare earth metal size in comparison with corresponding band for bis(phthalocyaninato) rare earth counterparts indicates the relatively weaker π–π interaction in these quadruple-deckers than in the double-deckers.  相似文献   

4.
A series of four phenanthro[4,5‐fgh]quinoxaline‐fused subphthalocyanine derivatives 0 – 3 containing zero, one, two, and three phenanthro[4,5‐fgh]quinoxaline moieties, respectively, were isolated from the mixed cyclotrimerization reaction of 2,9‐di‐tert‐butylphenanthro[4,5‐fgh]quinoxaline‐5,6‐dicarbonitrile with 4,5‐bis(2,6‐diisopropylphenoxy)phthalonitrile and characterized by a series of spectroscopic methods including MALDI‐TOF mass, 1H NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence spectroscopy. The molecular structures for the compounds 0 and 2 were clearly revealed on the basis of single‐crystal X‐ray diffraction analysis. Their electrochemical properties were also studied by cyclic voltammetry. In particular, theoretical calculations in combination with the electronic absorption and electrochemical analyses revealed the significant influence of the fused‐phenanthro[4,5‐fgh]quinoxaline units on the electronic structures.  相似文献   

5.
The electronic absorption spectroscopic data for two series of 60 unsubstituted/substituted bis(phthalocyaninato) and mixed [tetrakis(4-chlorophenyl)porphyrinato](phthalocyaninato) rare earth complexes M(Pc)2, M(Pc)2 and M(TClPP)(Pc) [M = Y, La…Lu except Pm; Pc = dianion of 2,3,9,10,16,17,23,24-octakis(4-methoxyphenoxy)phthalocyanine [Pc(MeOPhO)8], dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)phthalocyanine (TBPc) and TClPP = tetra(4-chloro)phenylporphyrin] have been measured in CHCl3. In this paper, the influence of the symmetry of macrocycle rare earth molecules, the effects of ionic radius of the rare earth metal and the influence of substituent species (tert-butyl and 4-methoxyphenoxy groups) onto the peripheral benzene rings on the electronic absorption characteristics of sandwich-type compounds have also been tentatively studied in detail.  相似文献   

6.
A series of pyrene‐based bisazolium salts have been obtained starting from 4,5,9,10‐tetrabromo‐2,7‐di‐tert‐butylpyrene. The synthetic procedure to the pyrene‐bisazoliums (PBIs) reveals an unexpected behavior, as a consequence of the presence of the alkyl groups (alkyl=Me, Et, n‐Pr, and n‐Bu) coming from the trisalkoxyformate in the final products, instead of the expected tBu of tAmyl groups from the starting tetra‐aminated pyrenes. All bisazoliums show fluorescence properties, with emissions in the range of 370–420 nm, and quantum yields ranging from 0.29 to 0.41. The PBIs were used as bis‐NHC precursors in the preparation of a series of dirhodium and diiridium complexes, which have been fully characterized. The electrochemical studies on selected dimetallic complexes reveal that the electronic communication between the metals through the polyaromatic linker is negligible.  相似文献   

7.
Pyrene‐bridged boron subphthalocyanine dimers were synthesized from a mixed‐condensation reaction of 2,7‐di‐tert‐butyl‐4,5,9,10‐tetracyanopyrene and tetrafluorophthalonitrile, and their syn and anti isomers arising from the result of connecting two bowl‐shaped boron subphthalocyanine molecules were successfully separated. Expansion of the conjugated system of boron subphthalocyanine through a pyrene bridge caused a redshift of the Q band absorption relative to the parent pyrene‐fused monomer, whereas combining the curved π‐conjugation of boron subphthalocyanine with the planar π‐conjugation of pyrene enabled facile embracement of C60 molecules, owing to the enhanced concave–convex π–π stacking interactions.  相似文献   

8.
A series of eleven heteroleptic bis(phthalocyaninato) rare earth double‐deckers [MIII(pc){pc(α‐OC5H11)4}] 1 – 11 (M=Y, Sm? Lu; pc=phthalocyaninato; pc(α‐OC5H11)4=1,8,15,22‐tetrakis(1‐ethylpropoxy)phthalocyaninato) were prepared as racemic mixtures by [MIII(pc)(acac)]‐induced (acac=acetylacetonato) cyclic tetramerization of 3‐(1‐ethylpropoxy)phthalonitrile in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in refluxing pentanol. These compounds could also be prepared by treating [MIII(pc)(acac)] with the metal‐free phthalocyanine H2{pc(α‐OC5H11)4} in refluxing octanol. The whole series of double‐decker complexes 1 – 11 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of the Sm, Eu, and Er complexes 1, 2 , and 8 , respectively, were also determined by single‐crystal X‐ray diffraction analysis. The effects of the rare earth ion size on the reaction yield, molecular structure, and spectroscopic and electrochemical properties of these complexes were systematically examined.  相似文献   

9.
通过在铽的酞菁卟啉混杂三层的卟啉周边共价连接体积庞大的笼型倍半硅氧烷(POSS), 得到了首个包含POSS的混杂三层Tb2(Pc)[T(OPOSS)4PP]2 (1)[H2Pc=phthalocyanine;H2T(OPOSS)4PP=5, 10, 15, 20-tetra{[[N-[heptakis(isobutyl)propoxy]phenyl]octasiloxane]}porphyrin]。为了对比研究, 同时合成了类似的三层化合物Tb2(Pc)(TPP)2(2)(H2TPP=5,10,15,20-tetraphenyporphyrin)。尤其值得注意的是, 在没有外加磁场的条件下, Tb2(Pc)[T(OPOSS)4PP]2(1)和Tb2(Pc)(TPP)2(2)分别表现出单分子磁体和非单分子磁体的性质, 这充分说明了共价连接均匀分布的POSS基团有效地分离了磁性核心, 从而改善了酞菁卟啉混杂三层的磁性。  相似文献   

10.
通过在铽的酞菁卟啉混杂三层的卟啉周边共价连接体积庞大的笼型倍半硅氧烷(POSS),得到了首个包含POSS的混 杂三层Tb2(Pc)[T(OPOSS)4PP]2(1)[H2Pc=phthalocyanine;H2T(OPOSS)4PP=5,10,15,20-tetra{[[N-[heptakis(isobutyl)propoxy]phenyl]octasiloxane]}porphyrin]。为了对比研究,同时合成了类似的三层化合物Tb2(Pc)(TPP)2(2)(H2TPP=5,10,15,20-tetraphenyporphyrin)。尤其值得注意的是,在没有外加磁场的条件下,Tb2(Pc)[T(OPOSS)4PP]2(1)和Tb2(Pc)(TPP)2(2)分别表现出单分子磁体和非单分子磁体的性质,这充分说明了共价连接均匀分布的POSS基团有效地分离了磁性核心,从而改善了酞菁卟啉混杂三层的磁性。  相似文献   

11.
We developed a host–guest methodology for separation of single‐walled carbon nanotubes (SWNTs) according to the handedness, diameter and metallicity by the use of diporphyrin nanotweezers and nanocalipers. Although the pyrene has been frequently used to replace porphyrin, due to a similar affinity to the surface of SWNTs and better availability, the extraction and recognition abilities of dipyrene nanotweezers were not so good as those of diporphyrin ones as we reported previously. However, introduction of a tert‐butyl substituent at the 7′‐position of 2‐pyrene is found to enhance the extraction and recognition abilities of dipyrene nanotweezers and nanocalipers. That is, (6,5)‐SWNTs were obtained in high purity by use of bis(tert‐butylpyrene) nanotweezers with a phenanthrene spacer and metallic SWNTs were highly enriched by use of bis(tert‐butylpyrene) nanocalipers with a carbazole–anthracene–carbazole spacer.  相似文献   

12.
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′ IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.  相似文献   

13.
Wang R  Li Y  Li R  Cheng DY  Zhu P  Ng DK  Bao M  Cui X  Kobayashi N  Jiang J 《Inorganic chemistry》2005,44(6):2114-2120
A novel one-pot procedure starting from the corresponding M(acac)3 x nH2O, metal-free phthalocyanine H2Pc', and naphthalonitrile in the presence of DBU in n-octanol has been developed to prepare heteroleptic (naphthalocyaninato)(phthalocyaninato) rare earth double-decker complexes. A series of six sandwich compounds with different naphthalocyaninato ligands, phthalocyaninato ligands, and central rare earth metals, namely, Sm[Nc(tBu)4](Pc) [Nc(tBu)4 = 3(4),12(13),21(22),30(31)-tetra(tert-butyl)naphthalocyaninato; Pc = unsubstituted phthalocyaninato] (1), Sm(Nc)(Pc') [Pc' = Pc(OC5H11)4, Pc(OC8H17)8; Nc = 2,3-naphthalocyaninato; Pc(OC5H11)4 = 2(3),9(10),16(17),24(25)-tetrakis(3-pentyloxy)phthalocyaninato; Pc(OC8H17)8 = 2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyaninato] (2, 3), and M(Nc)[Pc(alpha-OC5H11)4] [M = Sm, Eu, Y; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] (4-6), have been isolated in good yields from this one-pot procedure demonstrating the generality of this synthetic pathway. In addition to spectroscopic analyses, the electrochemistry of these novel compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods.  相似文献   

14.
A new water-soluble zinc phthalocyanine, 2,9,16,23-tetrakis[4-(1-naphthoxy-4-sulfonic acid sodium salt)] phthalocyaninato zinc NhtZnPc, where Nht indicates the naphthoxy-4-sulfonic acid sodium salt, was synthesized and its electrochemical and spectroelectrochemical properties were investigated in DMSO solution. The formation of NhtZnPc was monitored with the UV–vis spectral changes of NhtH2Pc in MeOH solution. The electrochemical studies showed that NhtZnPc displayed two reduction waves assigned to Pc(3−)/Pc(2−) and Pc(4−)/Pc(3−) couples, while it also showed one oxidation wave which was assigned to Pc(−)/Pc(2−) couples. The half-wave potential of the first reduction is shifted by 0.067 V compared to that of unsubstituted metal-free phthalocyanine (H2Pc). This result shows that the weak electron-withdrawing sulfonated-naphthoxy groups on macrocyle core make the reduction processes of NhtZnPc easier in DMSO solution. The spectroelectrochemical results showed that the first reduction product exhibited the characteristic spectral changes corresponding to mono-anionic species of zinc phthalocyanine having long-term stability during the reduction process. But, the second reduction product resulted in unstable di-anionic forms in DMSO.  相似文献   

15.
A novel series of double‐decker lanthanide(III) bis(phthalocyaninato)–C60 dyads [LnIII(Pc)(Pc′)]–C60 (M=Sm, Eu, Lu; Pc=phthalocyanine) ( 1 a – c ) have been synthesized from unsymmetrically functionalized heteroleptic sandwich complexes [LnIII(Pc)(Pc′)] (Ln=Sm, Eu, Lu) 3 a – c and fulleropyrrolidine carboxylic acid 2 . The sandwich complexes 3 a – c were obtained by means of a stepwise procedure from unsymmetrically substituted free‐base phthalocyanine 5 , which was first transformed into the monophthalocyaninato intermediate [LnIII(acac)(Pc)] and further reacted with 1,2‐dicyanobenzene in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU). 1H NMR spectra of the bis(phthalocyaninato) complexes 3 a – c and dyads 1 a – c were obtained by adding hydrazine hydrate to solutions of the complexes in [D7]DMF, a treatment that converts the free radical double‐deckers into the protonated species, that is, [LnIII(Pc)(Pc′)H] and [LnIII(Pc)(Pc′)H]–C60. The electronic absorption spectra of 3 a – c and 1 a – c in THF exhibit typical transitions of free‐radical sandwich complexes. In the case of dyads 1 a – c , the spectra display the absorption bands of both constituents, but no evidence of ground‐state interactions could be appreciated. When the UV/Vis spectra of 3 a – c and 1 a – c were recorded in DMF, typical features of the reduced forms were observed. Cyclic voltammetry studies for 3 a – c and 1 a – c were performed in THF. The electrochemical behavior of dyads 1 a – c is almost the exact sum of the behavior of the components, namely the double‐decker [LnIII(Pc)(Pc′)] and the C60 fullerene, thus confirming the lack of ground‐state interactions between the electroactive units. Photophysical studies on dyads 1 a – c indicate that only after irradiation at 387 nm, which excites both C60 and [LnIII(Pc)(Pc′)] components, a photoinduced electron transfer from the [LnIII(Pc)(Pc′)] to C60 occurs.  相似文献   

16.
The reaction of 3,4‐di‐tert‐butyl‐thio‐phene 1‐oxide ( 8 ) with tetrachlorocyclopropene provided 6,7‐di‐tert‐butyl‐2,3,4,4‐tetrachloro‐8‐thia‐bicylo[3.2.1]octa‐2,6‐diene 8‐oxide ( 10 ), which was oxidized to the corresponding 8,8‐dioxide 16 by m‐chloroperbenzoic acid. The thermolysis of 16 in refluxing chlorobenzene, xylene, or octane gave 5‐tert‐ butyl‐1,2‐dichloro‐3‐[(1,1‐dich‐loro‐2,2‐dimethyl)‐pro‐ pyl]‐benzene ( 18 ) with extrusion of SO2 and 2‐tert‐butyl‐4,5,6‐trichloro‐9,9‐dimethylbicyclo[5.2.0]nona‐1,3,5‐triene ( 19 ) with extrusion of SO2 and HCl in 73–78% combined yields. On the other hand, the thermolysis of 16 in the presence of triethylamine gave 19 as the sole product in 98% yield. A mechanism that involves the initial formation of 4,5‐di‐tert‐butyl‐1,2,7,7‐tetrachlorocycloheptatriene ( 17 ) is proposed to ex‐ plain the observed products. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:132–222, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20079  相似文献   

17.
New 3,3‐diphenylpropoxyphthalonitrile (5) was obtained from 3,3‐diphenylpropanol (3) and 4‐nitrophthalonitrile (4) with K2CO3 in DMF at 50 °C. The novel cobalt(II) phthalocyanine complexes, tetrakis‐[2‐(1,4‐dioxa‐8‐azaspiro[4.5]dec‐8‐yl)ethoxy] phthalocyaninato cobalt(II) (2) and tetrakis‐(3,3‐diphenylpropoxy)phthalocyaninato cobalt(II) (6) were prepared by the reaction of the phthalonitrile derivatives 1 and 5 with CoCl2 by microwave irradiation in 2‐(dimethylamino)ethanol for at 175 °C, 350 W for 7 and 10 min, respectively. These new cobalt(II)phthalocyanine complexes were characterized by spectroscopic methods (IR, UV–visible and mass spectroscopy) as well as elemental analysis. Complexes 2 and 6 are employed as catalyst for the oxidation of cyclohexene using tert‐butyl hydroperoxide (TBHP), m‐chloroperoxybenzoic acid (m‐CPBA), aerobic oxygen and hydrogen peroxide (H2O2) as oxidant. It is observed that both complexes can selectively oxidize cyclohexene to give 2‐cyclohexene‐1‐ol as major product, and 2‐cyclohexen‐1‐one and cyclohexene oxide as minor products. TBHP was found to be the best oxidant since minimal destruction of the catalyst, higher selectivity and conversion were observed in the products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
To investigate the effects of metal–ligand coordination on the molecular structure, internal structure, dimensions, and morphology of self‐assembled nanostructures, two nonperipherally octa(alkoxyl)‐substituted phthalocyanine compounds with good crystallinity, namely, metal‐free 1,4,8,11,15,18,22,25‐octa(butyloxy)phthalocyanine H2Pc(α‐OC4H9)8 ( 1 ) and its lead complex Pb[Pc(α‐OC4H9)8] ( 2 ), were synthesized. Single‐crystal X‐ray diffraction analysis revealed the distorted molecular structure of metal‐free phthalocyanine with a saddle conformation. In the crystal of 2 , two monomeric molecules are linked by coordination of the Pb atom of one molecule with an aza‐nitrogen atom and its two neighboring oxygen atoms from the butyloxy substituents of another molecule, thereby forming a Pb‐connected pseudo‐double‐decker supramolecular structure with a domed conformation for the phthalocyanine ligand. The self‐assembling properties of 1 and 2 in the absence and presence of sodium ions were comparatively investigated by scanning electronic microscopy (SEM), spectroscopy, and X‐ray diffraction techniques. Intermolecular π–π interactions between metal‐free phthalocyanine molecules led to the formation of nanoribbons several micrometers in length and with an average width of approximately 100 nm, whereas the phthalocyaninato lead complex self‐assembles into nanostructures also with the ribbon morphology and micrometer length but with a different average width of approximately 150 nm depending on the π–π interactions between neighboring Pb‐connected pseudo‐double‐decker building blocks. This revealed the effect of the molecular structure (conformation) associated with metal–ligand (Pb? Nisoindole, Pb? Naza, and Pb? Obutyloxy) coordination on the dimensions of the nanostructures. In the presence of Na+, additional metal–ligand (Na? Naza and Na? Obutyloxy) coordination bonds formed between sodium atoms and aza‐nitrogen atoms and the neighboring butyloxy oxygen atoms of two metal‐free phthalocyanine molecules cooperate with the intrinsic intermolecular π–π interactions, thereby resulting in an Na‐connected pseudo‐double‐decker building block with a twisted structure for the phthalocyanine ligand, which self‐assembles into twisted nanoribbons with an average width of approximately 50 nm depending on the intertetrapyrrole π–π interaction. This is evidenced by the X‐ray diffraction analysis results for the resulting aggregates. Twisted nanoribbons with an average width of approximately 100 nm were also formed from the lead coordination compound 2 in the presence of Na+ with a Pb‐connected pseudo‐double‐decker as the building block due to the formation of metal–ligand (Na? Naza and Na? Obutyloxy) coordination bonds between additionally introduced sodium ions and two phthalocyanine ligands of neighboring pseudo‐double‐decker building blocks.  相似文献   

19.
Synthesis and Properties of the Diphthalocyaninates of Yttrium and Indium Blue di(phthalocyaninato(2–))metalates of tervalent yttrium and indium are obtained by the reaction of yttrium acetate or anhydrous indium chloride with molten phthalodinitrile in the presence of potassium methylate and isolated as complex salts with organic cations. Anodic oxidation of (nBu4N)[M(Pc2?)2] (M = Y, In) yields crystals of green paramagnetic di(phthalocyaninato)metal(III)-dichloromethane solvate, [M(Pc)2] · CH2Cl2eff = 1.8/1.9 B.M. (Y/In)). Red brown di(phthalocyaninato)metal(III)-polybromide, [M(Pc?)2]Brx is prepared by oxidation with bromine in excess. The redox properties of the di(phthalocyaninato)metalates(III) are investigated by cyclic voltammetry and difference pulse polarography. A quasi reversible (ΔE ? 60 mV) one electron process at 0.09 V (Y) and ?0.07 V (In) is assigned to the redox couple [M(Pc2?)2]?/[M(Pc)2]. Electronic absorption spectra as well as MIR/FIR and resonance Raman spectra are reported. The characteristic features of the three oxidation states and the influence of the ionic radius and the electron configuration of the metal ion are discussed.  相似文献   

20.
A series of octa‐substituted metal phthalocyanines [MPc(OC5H11)8] (M = Co, Ni, Cu, Zn, Pc = phthalocyaninato, (OC5H11)8 = iso‐pentoxy) were obtained from condensation of iso‐pentoxy phthalonitrile in the presence of DBU in n‐pentanol. The compounds were characterized using elemental analysis, IR, and UV/Vis spectra. The crystal structures of all compounds except M = Zn were determined by X‐ray diffraction methods. It was found that the distortion of Pc skeleton come of not only the intra‐molecular steric congestion of bulky substituents, but also the slipped overlaps of the closest molecules. The relations of some bond lengths of the Pc's skeleton to the substituents and central metal atom, as well as the spectroscopic properties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号