首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温潜伏性固化剂超细双氰胺对环氧树脂E51/改性胺固化剂593体系进行高温二次固化,并用聚丙二醇二缩水甘油醚(PPGDGE)对该体系进行改性。通过力学性能、动态力学分析、形状记忆性能和扫描电子显微镜研究了二次固化和PPGDGE用量对环氧树脂体系的影响。结果表明:二次固化使环氧树脂强度大幅提高,拉伸强度为79.1 MPa,提高了47.9%;PPGDGE的加入使环氧树脂的形状记忆性能大幅提高,当加入9 phr PPGDGE时,冲击强度提高了28.0%,形状回复速率提高了52.8%,形状回复率提高了5.2%。  相似文献   

2.
以聚丙二醇二缩水甘油醚(PPGDGE)为增韧剂改性环氧树脂E-51/甲基四氢邻苯二甲酸酐固化体系,通过力学性能、耐热性和形状记忆性能测试等研究了PPGDGE用量对该环氧体系性能的影响。结果表明:PPG-DGE添加质量分数为10%时,体系最大形变量增加约43%,形状回复速率增长75%;添加15%PPGDGE时,体系固定率提高了2.2%,回复率提高了4.5%,同时冲击强度提高了65%。PPGDGE的加入使得环氧树脂形状记忆性能有了大幅度提高。  相似文献   

3.
采用聚丙二醇二缩水甘油醚(PPGDGE)对环氧树脂进行了改性,力学性能测试表明PPGDGE可在基本不影响环氧树脂弯曲性能的同时有效地提高环氧树脂抗冲击性能,当添加量为20%时,环氧树脂冲击强度可达31.84 kJ/m2,相比于纯环氧树脂提高了70.5%。通过对EP/20%PPGDGE/DDS体系的非等温差示扫描量热(DSC)测试及活化能的求解,表明稀释剂的加入几乎不影响体系的固化,仅活化能略微降低。等温DSC固化动力学研究表明,固化反应遵循自催化反应机理,可使用Kamal模型较好地拟合。  相似文献   

4.
采用多乙烯多胺与低分子质量环氧树脂反应,并在其中引入聚醚和环氧树脂CYD-128合成的CYD-128改性聚醚链段,合成聚醚型水性固化剂,实验表明工艺可行。对CYD-128改性聚醚合成过程中各影响因素进行了研究,并对聚醚水性固化剂固化性能进行了评价。最佳配方与工艺为:选择分子质量为1 500的聚醚,环氧树脂与聚醚物质的量比为2∶1,催化剂选用BF3(60℃时加入)。与现有文献中报道的固化物性能相比,水性固化剂固化环氧体系的的柔韧性和附着力有大幅提高,硬度、光泽度和强度改变不大。  相似文献   

5.
目前室温固化耐高温环氧树脂结构胶粘剂主要采用液体端羧基丁腈橡胶增韧环氧树脂为主体,以改性液体端胺基丁腈橡胶或聚醚胺为韧性固化剂,其最高使用温度仅120℃。聚硫橡胶作为环氧树脂增韧剂和固化剂则由于耐热性能和增韧效果差,很少用于室温固化耐热环氧树脂结构胶粘剂。通过改进聚硫橡胶的内聚强度和耐热性能,作为增韧剂,克服了聚硫橡胶耐热性能和增韧效果差的缺点,大大地提高了室温固化环氧树脂结构胶粘剂的剥离强度,通过BMI与脂肪胺加成反应,并加入叔胺固化剂,合成具有BMI结构和叔胺的固化剂,以及加入有机硅改性石棉,使室温固化环氧树脂结构胶粘剂的耐热性能达到177℃,瞬间使用温度达300℃,达到室温固化高温使用的目的。  相似文献   

6.
非离子型水性环氧树脂固化剂的合成与性能研究   总被引:2,自引:0,他引:2  
采用低相对分子质量的环氧树脂E-51与聚醚-4000反应制备环氧改性聚醚加成物,再与多乙烯多胺进行反应制备胺封端的聚醚-环氧-胺加成物,最后采用单环氧化合物进行封端,合成非离子型水性环氧固化剂,实验表明工艺可行。对环氧E-51改性聚醚-4000合成过程中的各影响因素进行了研究,并对非离子型水性环氧固化剂的固化性能进行了评价。最佳配方与工艺为:n(环氧树脂E-51)∶n(聚醚-4000)2∶1,催化剂选用含三氟化硼(BF3)质量分数2%的乙醚溶液(60℃时加入,加入量为2%)。与现有的市售水性环氧固化剂固化性能相比,非离子型水性环氧固化剂固化的环氧体系的柔韧性和耐冲击性有大幅提高。  相似文献   

7.
通过复配酚醛胺固化剂T31和芳香胺固化剂间苯二甲胺(MXDA),制备环氧树脂固化剂体系.研究了添加不同比例固化剂及活性稀释剂聚丙二醇二缩水甘油醚(PPGDGE)对环氧补强材料流动性能和力学性能的影响.结果表明:当T31/MXDA质量比为5∶95,添加16质量份PPGDGE时,可制备一种高性能环氧补强材料,其固化前混合液...  相似文献   

8.
热致性液晶固化剂增韧环氧树脂的研究   总被引:13,自引:0,他引:13  
合成了一种环氧树脂的热致性液晶固化剂,利用红外光谱、偏光显微镜(POM)、差热分析仪(DSC)、元素分析等手段确认其结构。将此液晶固化剂加入环氧树脂/二氨基二苯砜(DDS)固化体系中,测试了固化物的力学性能,并用热重量分析仪(TG)、DSC测试了固化物的玻璃化转变(Tg)和热失重温度(Td),用偏光显微镜(POM)以不同配比的环氧树脂/液晶固化剂体系的固化样品形貌进行观察。结果表明:加入不到3%的液晶固化剂,可以使环氧固化物的拉伸强度提高50%,冲击强度提高一倍,Tg和Td明显提高,偏光显微镜照片表明液晶固化剂的加入使固体体系出现了相分离。  相似文献   

9.
《粘接》2017,(8)
采用多支链化合物改性苯酚(HBMP),通过曼尼希反应合成一种高韧性酚醛胺类环氧树脂固化剂。通过对其合成工艺、产物性能和固化性能的深入研究发现,该固化剂可大幅提高固化体系的韧性,获得了极佳的使用性能。  相似文献   

10.
合成了三种环氧大豆油低聚物作为室温和高温固化环氧树脂增韧剂,对其增韧环氧体系的粘接性能和力学性能进行了考察。试验结果表明,环氧树脂低聚物对固化体系的初期粘度等性能没有影响,对固化体系粘接性能和力学性能等有较大影响。与未改性的环氧树脂相比,由顺丁烯二酸酐扩链的环氧大豆油低聚物改性的环氧树脂剪切强度提高了56.64%。  相似文献   

11.
将氢化环氧树脂(AL-3040)和自制的含氟环氧树脂按不同的物质的量比共混,以聚丙二醇二缩水甘油醚(XY-207)为环氧稀释剂、1,8-薄荷烷二胺(MDA)为固化剂,完全固化之后制备出一种新型的含氟形状记忆环氧树脂体系,并表征了其分子结构、含氟环氧树脂含量对固化体系储能模量和形状记忆性能的影响,测试了体系表面和冲击断面含氟量以及冲击力学性能。研究结果表明:增大体系含氟环氧树脂含量时,固化体系的交联度增大;固化体系的储能模量随含氟环氧树脂含量的增加而增大;该形状记忆含氟环氧树脂体系具有良好的形状记忆性能,形变完全的时间随体系含氟环氧树脂含量的增加而缩短。  相似文献   

12.
以高强度环氧树脂为基体,表面改性处理的空心玻璃微珠(HGB)为填料,经高温固化制备了环氧树脂/HGB泡沫材料,并研究了HGB类型、HGB含量和固化剂用量对泡沫材料压缩性能的影响。研究发现,随着HGB填充量的增大,泡沫材料的密度和压缩强度均下降。当固化剂与环氧树脂物质的量比为0.85时,泡沫材料的抗压性能最好,压缩强度为40.19 MPa。偶联剂改性HGB可以有效改善HGB和基体树脂的粘合效果。当改性HGB质量分数为80%时,与未改性环氧树脂相比,环氧树脂/改性HGB泡沫材料压缩强度提高了5.0%,吸水率下降40.6%。  相似文献   

13.
采用硅烷偶联剂KH-560改性短切碳纤维(CF),并将其与聚氨酯增韧剂以及环氧树脂复合制备了CF增强环氧基形状记忆复合材料,通过力学性能、动态力学分析和形状记忆性能测试研究了改性CF的加入对环氧复合体系性能的影响。结果表明:改性CF的加入提高了体系的拉伸强度和冲击强度,当CF用量为1.0 phr时,体系的拉伸强度和冲击强度达到74.6 MPa和41.5 k J/m2,分别提高了9.1%和8.4%;另外CF的加入提高了体系的模量,使得体系的形变固定率增大,但同时导致形变回复性能有所降低。  相似文献   

14.
酸酐固化聚二甲基硅氧烷改性环氧树脂体系的研究   总被引:1,自引:0,他引:1  
合成了聚二甲基硅氧烷与环氧树脂的增容剂,以甲基四氢苯酐为固化剂固化聚二甲基硅氧烷改性环氧树脂体系,通过测定,中击强度、拉伸强度、弯曲强度分析了其增韧增强效果。结果表明,增容剂的加入提高了环氧树脂与聚二甲基硅氧烷的相容性,当聚二甲基硅氧烷的含量为10%时,改性环氧树脂体系的力学性能最好;并通过热失重法、差示扫描量热法测定了固化物的热性能,其耐热稳定性与纯环氧树脂相比有明显提高。  相似文献   

15.
单组分环氧胶固化剂及促进剂的改性研究   总被引:1,自引:0,他引:1  
陈秀宇  陈玉成  林谦 《应用化工》2008,37(2):146-148
采用间甲苯胺对固化剂双氰胺进行改性,红外表明双氰胺的—C≡N与间甲苯胺的—NH2发生反应,提高了固化剂的反应活性;XRD也证实了改性反应的进行。采用硫酸铜改性咪唑,XRD表明了有新的物质生成。经改性的双氰胺具有较好的活性和贮存稳定性。但单独使用改性双氰胺作固化剂,用量一般较大(为环氧树脂的25%),影响体系的流动性;而复合使用改性双氰胺和咪唑,在保证性能和固化时间的前提下,双氰胺的用量可减少至15%。改性双氰胺与环氧树脂具有较好的相容性,使环氧树脂固化体系的力学性能具有较大幅度的提高。  相似文献   

16.
二氰二胺作为环氧树脂的潜伏性固化剂,其固化物机械性能和介电性能优异。但由于二氰二胺与环氧树脂相溶性差,得不到均匀的组成物,且环氧树脂/二氰二胺体系的固化过程需在高于160℃的温度中进行。利用不同含量的有机酸与咪唑3位氮原子中和,改性生成的盐作为环氧树脂/二氰二胺体系固化促进剂,对该体系进行了改进,使其能够在中温(90~120℃)条件下固化。利用IR对改性产物进行了表征,并对未加促进剂的环氧树脂/双氰胺体系和以咪唑及有机酸改性咪唑为促进剂三种体系分别进行了差热分析。结果表明,有机酸改性咪唑促进剂可以使环氧树脂/二氰二胺体系的固化温度降低近50℃,并且适用期显著增加,长达141d,耐水性和耐热老化性能增加。  相似文献   

17.
对硫脲改性胺(3,3′-二乙基4,4′-二氨基二苯基甲烷和二元脂肪胺A)固化剂固化环氧树脂进行了系统研究,分析了合成反应时间、反应温度和单体配料比对固化剂性能的影响,并进一步考察了固化剂与环氧树脂的最佳掺量比以及固化产物的热性能和力学性能。实验结果表明:反应时间为2.5 h,反应温度为130℃,3,3′-二乙基4,4′-二氨基二苯基甲烷与硫脲和二元脂肪胺A的物质的量比为1∶0.5∶0.4时,合成的固化剂以1∶3加入环氧树脂中,体系能在室温环境下1 h左右凝胶,该体系经室温固化再以100℃的温度后固化之后具有较好的耐热性能和冲击韧性。  相似文献   

18.
热固性环氧树脂形状记忆效应研究   总被引:2,自引:0,他引:2  
将新型的高分子固化剂与环氧树脂(EP)进行共混,经适度交联固化后制备出一种具有较低玻璃化转变温度(Tg)的无定型EP体系,并对该EP固化体系的力学性能、形状记忆特性和动态力学性能等进行了研究。结果表明:适度交联固化的EP体系具有良好的形状记忆特性,固化剂用量是影响该形状记忆体系综合性能的主要因素;其最大形变恢复率均为100%,形变恢复速率基本上随固化剂用量增加而增大,最大形变恢复速率为0.023 s-1;形变固定率随固化剂用量增加而减小,当w(固化剂)=37.5%或54.5%时,形变固定率为100%或96%。  相似文献   

19.
以液态聚硫橡胶为增韧剂,低分子量聚酰胺为固化剂,制备聚硫橡胶/环氧树脂快速模具材料。以冲击强度、压缩强度和固化时间为考核指标,通过正交设计优化了固化温度、聚硫橡胶的加入量、固化剂的加入量和石墨用量等参数。结果表明:固化温度、固化剂用量对环氧固化物的冲击强度、压缩强度和固化时间的影响十分显著,液态聚硫橡胶明显改善了环氧树脂快速模具材料的力学性能,而石墨对其影响较小。综合冲击性能、压缩性能和固化时间三项指标,确定了环氧树脂模具材料的最佳制备条件为:固化温度70℃,聚硫橡胶加入量25%,固化剂加入量100%,石墨加入量30%。  相似文献   

20.
本文以硫脲和二甲硫基甲苯二胺(DMTDA)为原料,制备了一种新型环氧树脂固化剂,通过对硫脲反应程度,凝胶程度及其固化物拉伸强度,对合成条件进行了优化,结果表明,硫脲改性DMTDA的最佳工艺条件为DMTDA/硫脲的摩尔比为4:1,于130℃反应7h。改性固化剂较佳固化条件为环氧树脂/固化剂质量比为100/35,该体系经固化后其固化物的拉伸强度可达41.3MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号