首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were ‘long component’ and ‘short component’. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T 2 distribution gradually moved to the left and T 2 of long component and initial fluidity were linearly correlated.  相似文献   

2.
Silicon-doped diamond-like carbon (Si-DLC) films possess the potential to improve wear performance of DLC films in humid atmospheres and at higher temperatures. But many experimental results of Si-DLC films show that their structure and mechanical properties have changed greatly with the increasing silicon content. Therefore, molecular dynamics (MD) simulations were used to generate hydrogen-free Si-DLC films and study their nano-indentation process under the interaction of a diamond indenter. The results show that sp 3/sp 2(C) (only carbon atoms) always decreases with the increasing silicon content. But sp 3/sp 2(C+Si) ratio increases firstly and reaches a maximum at the silicon content of 0.2, and then decreases with the further increase of the silicon content. Bulk modulus and hardness of the Si-DLC films both decrease with the increasing of the silicon content, which has the same trend with Papakonstantinou and Ikeyama’s results. It is concluded that the hardness of the Si-DLC films is dependent on sp 3/sp 2(C), not sp 3/sp 2(C+Si).  相似文献   

3.
The adsorption amount, ζ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer(FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g(about 72.5%). The adsorption amount of FDN was reduced by STPP, but ζ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ζ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced.  相似文献   

4.
The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.  相似文献   

5.
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg~2/(cm~4·h~2) to 2.3 mg~2/(cm~4·h~2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].  相似文献   

6.
Calcium silicate hydrate(C-S-H) with Ca/Si ratio 1.0 was prepared via precipitation in solution and heated at various temperatures to investigate its dehydration behavior. The dehydration, structural collapse and recrystallization characteristics of C-S-H and its microstructural change during heating process were investigated by XRD, SEM, Raman and TG-DSC techniques. C-S-H gradually lost non-evaporable water upon heating, about 50% and 80% non-evaporable water was removed below 200 and 400 ℃, respectively, and the rest was removed up to about 1 000 ℃. At 400 ℃, dehydrated C-S-H exhibited the increasing disordering of calcium/silicon environment and the decreasing symmetrical bending vibration of Si-O-Si of Q~2 silicate chains. At 650 ℃ non-bridging oxygen atoms(O_(non)) attached to silicon were almost removed, and significant structural change occurred, and at 815 ℃ C-S-H dehydrated to wollastonite.  相似文献   

7.
A new composite two component grout comprised of modified urea–formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chemical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea–formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three levels showed that gel time increased with increased water content and with urea–formaldehyde resin content. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B component. The solid strength increases over time and becomes stable by the 28th day after mixing. The viscosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.  相似文献   

8.
目的应用无机、有机材料复合理论,研究用于人工渔礁制作中木船表面处理的可再分散胶水泥基耐海水材料.方法通过5%以内的不同掺量聚合物乳液和可再分散聚合物粉末对水泥基材料改性效果的对比,掺有机硅防水剂对聚合物改性水泥净浆性能的影响、涂覆于木材表面的水泥净浆硬化后涂层的耐海水等性能的研究,特别对高性能可再分散胶水泥基耐海水材料于木材粘结后在海水中浸泡28d的粘结力、耐磨性、抗冲击性及开裂情况进行了测定和现场观察与评价.结果研究表明可再分散胶水泥基耐海水材料是一种高性能的水泥基复合材料,尤其是与木材的粘结性能十分优异;而在力学性能方面,可再分散胶水泥基复合材料也比聚合物乳液水泥基复合材料有所提高.结论掺占水泥质量5%的可再分散聚合物粉末、2%有机硅的水泥净浆涂覆于木材表面,硬化后会形成耐海水性能良好的涂层,可作为船体表面保护层,满足船只沉降后长期经海水浸泡的要求.  相似文献   

9.
通过正交试验提出纳米超高强高流态混凝土的胶凝材料配合比设计参数,并研究了纳米SiO2的掺入对传统掺硅灰、粉煤灰超高强水泥基胶凝材料强度及工作性能的影响。在保证水胶比不变的条件下,开展了混凝土配合比试验,并研究了纳米SiO2对混凝土抗压强度的影响及其微观机理。结果表明:超高强高流态混凝土中胶凝材料最优比例为:纳米SiO2:硅灰:粉煤灰:水泥=1:8:20:71;在胶凝材料用量为600~1 000 kg/m3范围内,随着其掺量的增加,混凝土流动度不断增加,抗压强度先增大后减小,当其掺量为800 kg/m3时,抗压强度最大。分析认为,纳米SiO2、硅灰与粉煤灰形成的三元多尺度堆积体系能优化粉体材料在混凝土中的微集料密实填充效应,纳米SiO2的二次水化反应也有效改善了硬化水泥石的微观结构,并优化其形态分布,进一步增大其强度。  相似文献   

10.

Chlorine-36 has various advantages as a dating tool for old groundwater. In this paper,36Cl of Quaternary groundwater in the Hebei plain of North China has been measured using accelerator mass spectrometry (AMS). Ages calculated from the36Cl/Cl ratio show that ion filtration, which is responsible for the Cl concentration increasing with depth and along flow paths in Hebei plain groundwater. It is concluded that36Cl age of the groundwater in the 3rd Group of the Quaternary (Q2) in the Cangzhou area is 250ka, and that of the 4th Group(Q1) is 300 ka.

  相似文献   

11.
Chlorine-36 has various advantages as a dating tool for old groundwater. In this paper,36Cl of Quaternary groundwater in the Hebei plain of North China has been measured using accelerator mass spectrometry (AMS). Ages calculated from the36Cl/Cl ratio show that ion filtration, which is responsible for the Cl concentration increasing with depth and along flow paths in Hebei plain groundwater. It is concluded that36Cl age of the groundwater in the 3rd Group of the Quaternary (Q2) in the Cangzhou area is 250ka, and that of the 4th Group(Q1) is 300 ka.  相似文献   

12.
Influences of polypropylene (PP) fiber and styrene-butadiene rubber (SBR) polymer latex on the strength performance, abrasion resistance of cement mortar were studied. The experimental results show that the flexural strength, brittleness index (σFC) and abrasion resistance can be improved significantly by the addition of PP fiber and SBR polymer latex. The relationship between the flexural strength and abrasion resistance was analyzed, showing a good linear relationship between them. The reinforced mechanism of PP fiber and SBR polymer latex on cement mortar was analyzed by some microscopic tests. The test results show that the addition of SBR polymer latex has no significant influence on the cement hydration after 7 d curing. Adding SBR polymer latex into cement mortar can form a polymer transition layer in the interfaces of PP fiber and cement hydrates, which improves the bonding properties between the PP fiber and cement mortar matrix effectively.  相似文献   

13.
The effect of curing regime on degree of Al3+ substituting for Si4+(Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning(MAS) nuclear magnetic resonance(NMR) with deconvolution technique. The curing regimes included the constant temperature(20, 40, 60 and 80 ℃) and variable temperature(simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is benefi cial to substitution of Al3+ for Si4+, and Al/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃ is less than that at 20 ℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is benefi cial to the increase of Al/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length(MCL) of C-S-H gels, furthermore, the amount of Al3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insuffi cient in hardened Portland cement pastes.  相似文献   

14.
The microstructural study was conducted on cement and cement-slag pastes immersed in different concentrations of Mg(NO_3)_2 solutions utilizing ~(29)Si, ~(27)Al NMR spectroscopy and XRD techniques. The results show that the hydration of both the cement and cement-slag pastes is delayed when the pastes are cured in Mg(NO_3)_2 solutions as compared to the pastes cured in water. Moreover, Mg~(2+) ions also exhibit an decalcifying and dealuminizing effect on the C-A-S-H in cement and cement-slag pastes, and thereby decrease Ca/Si and Al[4]/Si ratios of the C-A-S-H. The dealuminization of C-A-S-H is mitigated for cement-slag paste as compared to pure cement paste. The depolymerized calcium and aluminum ions from C-A-S-H gel mainly enter the pore solution to maintain the pH value and form Al~[6] in TAH, respectively. On the other hand, Mg~(2+) ions exert an impact on the intra-transition between Al~[6] species, from AFm and hydrogarnet to hydrotalcite-like phase. NO_3~-ions are interstratified in the layered Mg-Al structure and formed nitrated hydrotalcite-like phase(Mg_(1-x)Al_x(OH)_2(NO_3)_x·nH_2O). Results from both ~(27)Al NMR and XRD data show that ettringite seems not to react with Mg~(2+) ions.  相似文献   

15.
A new method to prepare radiation shielding functional aggregate is described, and an appropriate mix ratio and a reasonable calcinated condition was engaged. The γ-ray shielding capability of both the new functional aggregates and some other nature aggregates had been measured. The linear attenuation coefficients (µ, cm?1) of these aggregates had been calculated at photon energies from 1 keV to 10GeV using XCOM program, and measured at the photon energies of 662 keV, showing good agreement between experimental and calculated results. The results show that the γ-ray shielding capacity of the new functional aggregates has been improved substantially compared with basalt, almost equal to serpentine and high-titanium slag, and up to 80% to barite.  相似文献   

16.
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone(ITZ)between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity(n)and constrictivity factors(Ds/D0)of pore in the hardened pastes are n≈3.2,Ds/D0=1.0×10-4respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results;The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.  相似文献   

17.
The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of 29Si NMR spectroscopy, and SEM-EDS analysis. Additionally, molecular dynamics simulation was performed to study the aluminum coordination status and interaction of sulfate ions in C-(A)-S-H gel. The results showed significant changes in the microstructural evolution of C-(A)-S-H gel in Portland cement paste. Sulfate attack has decalcifying and dealuminizing effect on C-(A)-S-H gel which is evident from increase in mean chain length (MCL) and decrease in Ca/Si & Al[4]/Si ratios of C-(A)-S-H gel. Additionally, Molecular dynamics simulation proves that Al[4] substituted in silicate chains of C-(A)-S-H gel is thermodynamically metastable, which may explain its migration from the silicate chains and transformation to Al[6], thus lowering the Al[4]/Si ratio of C-(A)-S-H gel. SO42- ions can carry the interfacial Ca2+ ions into the pore solution by the diffusion-absorption-desorption process, which unravels the mechanism of sulfate attack on C-(A)-S-H gel.  相似文献   

18.
利用抗压试验、抗折试验、扫描电镜等方法,探讨了水泥掺量对聚合物砂浆性能的影响.试验结果表明:当水泥掺量为115%时与水泥掺量0%时相比,聚合物砂浆的抗折强度提高95%,抗压强度提高74%,折压比也相应有所提高.但加入量高于115%时,导致水泥比表面积过大,抗折强度和抗压强度均有所下降.  相似文献   

19.
利用抗压试验、抗折试验及扫描电镜等方法,探讨了聚酯纤维对聚合物砂浆性能的影响.试验结果表明:当聚酯纤维掺量为0.8%与聚酯纤维掺量0%相比,聚合物砂浆的抗折强度提高17%,抗压强度提高5%,折压比也相应有所提高.但加入量高于0.8%时,抗折强度和抗压强度均有所下降.  相似文献   

20.
As the coal combustion behaviors are rather complex in the cement industry, the traditional assessment method cannot be directly applied to evaluate the quality of coal. Based on the thermal analysis tests of more than 80 kinds of anthracite and bituminous coal, three evaluation parameters, namely, burning intensity (I), average capacity of heat release (Q), and general burning index (S) are presented, combining with the consideration of application and calciner types in the cement industry. Taking these three parameters into consideration together is necessary. Experimental results show that the coal with higher S, lower I and higher Q can be rated as the best for the calciner in the cement industry. The quantitative indexes are given to evaluate the bituminous coal and anthracite in this paper. This new assessment method has implications for the design of calciner in the cement industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号