首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesotrione is a benzoylcyclohexane-1,3-dione herbicide that inhibits 4-hydroxyphenyl pyruvate dioxygenase in target plants. Although it has been used since 2000, only a limited number of degrading microorganisms have been reported. Mesotrione-degrading bacteria were selected among strains isolated from Brazilian aquatic environments, located near corn fields treated with this herbicide. Pantoea ananatis was found to rapidly and completely degrade mesotrione. Mesotrione did not serve as a sole C, N, or S source for growth of P. ananatis, and mesotrione catabolism required glucose supplementation to minimal media. LC-MS/MS analyses indicated that mesotrione degradation produced intermediates other than 2-amino-4-methylsulfonyl benzoic acid or 4-methylsulfonyl-2-nitrobenzoic acid, two metabolites previously identified in a mesotrione-degrading Bacillus strain. Since P. ananatis rapidly degraded mesotrione, this strain might be useful for bioremediation purposes.  相似文献   

2.
Soil contamination can be one path for streams and groundwater contamination. As a complement of chemical analysis and total contaminants determination, bioassays can provide information on the bioavailable fraction of chemical compounds, focusing on the retention and habitat function of soils. In this study the evaluation of the toxicity of two soils from the abandoned Jales Mine (Portugal) regarded both functions. The buffer capacity of soils was tested with bioassays carried out using the cladoceran Daphnia magna and the marine bacteria Vibrio fischeri. The habitat function of soils was evaluated with the reproduction bioassay with the collembolan Folsomia candida. The Microtox solid-phase test was performed with V. fischeri using soil as test medium, and soil elutriates were extracted to perform the Microtox basic test, and an immobilization and reproduction bioassay with D. magna. The marine bacteria showed high sensitivity to the soil with low heavy metal content (JNC soil) and to JNC soil elutriates, while the soil with highest heavy metal content (JC soil) or soil elutriates exposure did not cause any toxic effect. In the bioassays with D. magna, organisms showed sensitivity to JNC and also to JC soil elutriates. Both mobilization and reproduction features were inhibited. The bioassay with F. candida did not reflect any influence of the contaminants on their reproduction. Although JNC soil presented lower heavy metal contents, elutriates showed different patterns of contamination when compared to JC soil and elutriates, which indicates different retention and buffer capacities between soils. Results obtained in this study underlined the sensitivity and importance of soil elutriate bioassays with aquatic organisms in the evaluation strategy in soil ERA processes.  相似文献   

3.
Effluents are a main source of direct and often continuous input of pollutants into aquatic ecosystems with long-term implications on ecosystem functioning. Therefore, the study of the effects of effluent exposure on organisms, populations or communities within the framework of impact assessment has a high ecological relevance. The aim of this study was to assess the toxicological impact of two effluents, one household wastewater treatment effluent (Effluent 1) and one industrial effluent (Effluent 2), on the receiving aquatic ecosystem using two test species under both in situ and laboratory conditions. Zebra mussel (Dreissena polymorpha) and common carp (Cyprinus carpio) were exposed under laboratory conditions in an online monitoring flow-through system (receiving different concentrations of Effluent 2) and under in situ conditions along the pollution gradient established by these two effluent discharges. Bioassays focussed on growth and condition related endpoints (i.e. condition, growth, lipid budget), since these are key functional processes within organisms and populations. Under laboratory conditions, increasing concentrations of the industrial effluent (Effluent 2) had a negative effect on both zebra mussel and carp energy reserves and condition. Under in situ conditions, the same negative impact of Effluent 2 was observed for zebra mussels, while Effluent 1 had no apparent effect on exposed zebra mussels. Carp growth and condition, on the other hand, were significantly increased at the discharge sites of both effluents when compared to the reference site, probably due to differences in food availability. The results indicate that a combination of in situ and laboratory exposures can illustrate how ecological processes influence bioassay studies. The incorporation of indirect, ecological effects, like changes in food availability, provides considerable benefit in understanding and predicting effects of effluents on selected species under realistic exposure conditions.  相似文献   

4.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

5.
Bioassays with unicellular algae are frequently used as ecotoxicological test systems to evaluate the toxicity of contaminated environmental samples or chemicals. In contrast, aquatic macrophyte test systems are still rarely used as they are laborious to handle because species exhibit distinct ecological requirements. The aim of this study was to establish a fast and reproducible measuring system for aquatic macrophyte species to overcome those limitations for use. Thus, a newly developed pulse-amplitude modulated chlorophyll fluorometer (Imaging-PAM) was applied as an effect detection in short-term bioassays with aquatic macrophyte species. This multiwell-plate-based measuring device enables the incubation and measurement of up to 24 samples in parallel. The Imaging-PAM was used (i) to establish and validate the sensitivity of the test systems to three Photosystem II (PSII) inhibitors (atrazine, prometryn, isoproturon), (ii) to compare the test systems with established biotests for macrophytes and (iii) to define necessary time scales in aquatic macrophyte testing. The results showed that fluorescence-based measurements with the Imaging-PAM allow rapid and parallel analysis of large amounts of aquatic macrophyte samples and of toxicants effects of the PSII inhibitors tested on aquatic macrophytes. Measurements revealed a good correlation between obtained median effective concentrations (EC50s) for the new and the established biotest systems. Hence, the Imaging-PAM measuring device is a promising tool to allow fast chemical effect screening for high amounts of samples with little time and material and thus offers scope for high-throughput biotesting using aquatic macrophyte species.  相似文献   

6.
Acclimation of organisms for ecotoxicity testing is in general processed according to Organisation for Economic Co-operation and Development (OECD) and/or Environmental Protection Agency (EPA) guidelines, under controlled conditions. However, when organisms are collected in the field, their capture, transport and adaptation to laboratory conditions are factors of stress. In their natural habitat, estuarine fish are exposed to considerable fluctuations of environmental variables, while in laboratory they are acclimated to constant conditions and this can be per se a factor of stress that may influence biomarker responses. Therefore, it is important to investigate the effects of these procedures on estuarine fish performance before using them as test organisms in ecotoxicity bioassays. The goal of the present study was to investigate the effects of transporting the common goby, Pomatoschistus microps from the field (natural populations) to the laboratory and of its acclimation to laboratory conditions on the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and glutathione S-transferases (GSTs). Fish were collected in a reference site of the Minho River estuary (NW of Portugal) and the activities of the biomarkers were monitored before and after the transport of organisms to the laboratory and during the acclimation period (at 5, 10 and 15 days). The activities of all the enzymes indicated that capture and transport conditions had no effects on enzymatic activities. Furthermore, AChE, LDH and GST presented higher activities at the end of the acclimation period than at beginning, suggesting a physiological adaptation to laboratory conditions. This adaptation should be taken into consideration in the experimental design to avoid bias in the interpretation of effects of xenobiotics on biomarkers.  相似文献   

7.
N.O. Crossland 《Chemosphere》1990,21(12):1489-1497
The physicochemical properties, fate and toxicity of 3,4-dichloroaniline (3,4-DCA) in aquatic environments are reviewed.  相似文献   

8.
This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance.  相似文献   

9.
Fish live in direct contact with their immediate external environment and, therefore, are highly vulnerable to aquatic pollutants. In this study, Oreochromis niloticus were caught at three different sites in Al-Hassa irrigation channels, namely Al-Jawhariya, Um-Sabah and Al-Khadoud. The histological changes in gills and liver were detected microscopically and evaluated with semi-quantitative analyses. Also, heavy metals have been determined in the water samples in these sites. Results showed that all sites were polluted by different kinds of heavy metals. Cd and Pb were mostly detected at concentrations above the WHO reference values. Meanwhile, various histopathological abnormalities were observed in gills and liver of fish specimens. In the gill filaments, cell proliferation, lamellar cell hyperplasia, lamellar fusion, lifting of the respiratory epithelium, and the presence of aneurysmal areas were observed. In the liver, there was vacuolization of the hepatocytes, sinusoidal congestion, necrosis of the parenchyma tissue, nuclear pyknosis, eosinophilic hepatocellular degeneration, pigment accumulation, an increase in the number and size of melanomacrophage centers. Liver tumors with severe chronic inflammation were occasionally found in fish at Al-Khadoud area (first-time report). The histological lesions were comparatively most severe in the liver. Despite heavy metals assessment did not show marked differences among sites, histopathological biomarkers indicated that the surveyed fish are living under stressful environmental conditions. So, we suggest use those biomarkers in future monitoring of aquatic systems.  相似文献   

10.
Emission inventories are an essential tool for evaluating, managing, and regulating air pollution. Refinements and innovations in instruments that measure air pollutants, models that calculate emissions, and techniques for data management and uncertainty assessment are needed to enhance emission inventories. This workshop provided recommendations for improving emission factors, improving emission models, and reducing inventory uncertainty. Communication that increases cooperation between developers and users of inventories is essential. Emission inventories that incorporate these improvements will meet the challenges of the future.  相似文献   

11.
Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.  相似文献   

12.

Background, aim, and scope  

Aquatic microcontaminants (MCs) comprise diverse chemical classes, such as pesticides, biocides, pharmaceuticals, consumer products, and industrial chemicals. For water pollution control and the evaluation of water protection measures, it is crucial to screen for MCs. However, the selection and prioritization of which MCs to screen for is rather difficult and complex. Existing methods usually are strongly limited because of a lack of screening regulations or unavailability of required data.  相似文献   

13.
14.
Environmental Science and Pollution Research - Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the...  相似文献   

15.
Bolz U  Körner W  Hagenmaier H 《Chemosphere》2000,40(9-11):929-935
A simple and sensitive GC/MS method for the quantitative determination of the estrogenic phenolic compounds 4-nonylphenol, 4-t-octylphenol, bisphenol A, 3-t-butyl-4-hydroxyanisole, 2-t-butyl-4-methylphenol, 4-hydroxybiphenyl, 2-hydroxybiphenyl, 4-chloro-3-methylphenol, and 4-chloro-2-methylphenol in aquatic samples was developed. The method for assessing their occurrence in sewage, surface and drinking waters consists of solid phase extraction (SPE) using a polystyrene copolymer phase. After methylation of the extract HRGC/LRMS analysis was possible without any clean up, even in raw sewage samples. Limits of detection and determination were between <0.01 and 0.05 ng/l and 0.01 and 0.05 ng/l, respectively. Recoveries were above 70% with exception of 3-t-butyl-4-hydroxyanisole.  相似文献   

16.
This study was conducted to investigate the potential use of biomarkers in bioassays with chironomids to assess contamination by pesticides in temperate and tropical climates. Two species of midge were studied, the widespread Chironomus riparius and the tropical Kiefferulus calligaster (Kieffer, 1911). Preliminary studies included investigations of the effects of temperature on larval development and the influence of larval age on normal variability of cholinesterase (ChE) and glutathione S-transferase (GST) activities and protein content. In the second phase, the influence of two abiotic factors particularly important in tropical conditions (temperature and oxygen concentration) and of the organophosphorous (OP) insecticide dimethoate on biochemical and conventional endpoints was investigated. Results showed that K. calligaster is morphologically and physiologically similar to C. riparius and for both, the time of larval development decreases with the increase of temperature. Moreover, 3rd and 4th instars appeared to be the most suitable for biomarkers determinations. ChE activity seems to be valuable biomarker regarding temperature and dissolved oxygen (DO) variations, while some caution should be taken when using GST as an environmental biomarker, since it shows some dependence of these parameters. C. riparius was more sensitive to dimethoate than K. calligaster suggesting that the use of bioassays with the former species in tropical conditions may overestimate the toxicity of OP pesticides to autochthonous species. When testing sub-lethal effects of dimethoate to C. riparius, ChE activity showed to be a very sensitive parameter detecting significant effects at the lowest concentration that caused emergence delay of larvae, suggesting that it is an ecologically relevant parameter.  相似文献   

17.
In this report, we refer to pharmaceuticals that are widespread in the urban aquatic environment and that mainly originate from wastewater treatment plants or non-point source sewage as “wastewater-marking pharmaceuticals” (WWMPs). To some extent, they reflect the condition or trend of water contamination and also contribute to aquatic environmental risk assessment. The method reported here for screening typical WWMPs was proposed based on academic concerns about them and their concentrations present in the urban aquatic environment, as well as their properties of accumulation, persistence, eco-toxicity and related environmental risks caused by them. The screening system consisted of an initial screening system and a further screening system. In the former, pharmaceuticals were categorised into different evaluation levels, and in the latter, each pharmaceutical was given a normalised final evaluation score, which was the sum of every score for its properties of accumulation, persistence, eco-toxicity and environmental risk in the aquatic environment. The system was applied to 126 pharmaceuticals frequently detected in the aquatic environment. In the initial screening procedure, five pharmaceuticals were classified into the “high” category, 16 pharmaceuticals into the “medium” category, 15 pharmaceuticals into the “low” category and 90 pharmaceuticals into the “very low” category. Subsequently, further screening were conducted on 36 pharmaceuticals considered as being of “high”, “medium” and “low” categories in the former system. We identified 7 pharmaceuticals with final evaluation scores of 1–10, 10 pharmaceuticals with scores of 11–15, 15 pharmaceuticals with scores from 16 to 20 and 4 pharmaceuticals with scores above 21. The results showed that this screening system could contribute to the effective selection of target WWMPs, which would be important for spatial-temporal dynamics, transference and pollution control of pharmaceuticals in the urban aquatic environment. However, there remains a number of pharmaceutical parameters with measured data gaps, such as organic carbon adsorption coefficients and bioconcentration factors, which, if filled, would improve the accuracy of the screening system.  相似文献   

18.
Environmental Science and Pollution Research - The stability of nanoparticles (NPs) in aquatic environments is important to evaluate their adverse effects on aquatic ecosystems and human health....  相似文献   

19.
Staples CA 《Chemosphere》2000,41(10):1529-1533
Approximately half of the approximately 40 million tonnes per annum (t/a) of acetone released worldwide arises via natural processes. The remaining releases of acetone are the focus of this assessment and arise either as a photo-degradation by-product of other organic compounds (approximately 20 million t/a) or by entering the environment from manufacturing and end uses (59,000 t/a). Multi-media modeling was used to estimate regional concentrations of acetone in air, water, soil and sediment that may occur based on these anthropogenic releases to the environment. US toxics release inventory data were used to calculate local surface water concentrations. The distributions of all regional and local concentrations in all media were below applicable predicted no effect concentrations (PNECs). Calculated regional and local concentrations of acetone, originating from all anthropogenic sources, appear unlikely to cause adverse risks to the environment.  相似文献   

20.
QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data   总被引:2,自引:0,他引:2  
Netzeva TI  Schultz TW 《Chemosphere》2005,61(11):1632-1643
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号