首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了不同质量浓度(1 mg/L和20 mg/h)多壁碳纳米管(Muhiwalled Carbon Nanotubes,MWCNTs)短期(21 d)作用对序批式活性污泥反应器(SBR)废水脱氮除磷效果的影响.结果表明,1mg/L和20mg/L MWCNTs废水的持续作用对反应器出水NH4+-N、NO3--N、NO2--N和TP质量浓度(分别为0.35 mg/L、4.5 mg/L、0.1 mg/L和0.15 mg/L)及1个反应周期内的氮磷转化过程并未产生明显的影响.活性污泥3h呼吸抑制试验表明,低质量浓度(ρ<100 mg/L)MWCNTs短暂作用(3h)对活性污泥活性并没有明显的抑制作用.但当MWC-NTs质量浓度达到g/L级别后,MWCNTs对活性污泥活性存在明显的抑制作用,而且MWCNTs对活性污泥的呼吸抑制作用与质量浓度呈正相关性.研究表明,1 mg/k和20 mg/L MWCNTs对活性污泥系统短期作用并不影响活性污泥系统脱氮除磷的效果.  相似文献   

2.
以活性污泥为种泥,通过序批式反应器(Sequencing Batch Reactor,SBR),在厌氧-缺氧-好氧交替的条件下驯化培养以硝酸盐为主要氮源的反硝化除磷细菌(Denitrifying Phosphorus-Accumulating Organisms,DPAO)。在330 d的培养时间内监测磷酸盐、硝酸盐和亚硝酸盐等常规指标,并研究驯化不同阶段的一个周期内各指标的变化及进行相应的动力学分析。结果表明,随着驯化的进行,厌氧阶段释磷速率逐渐增加,释磷量也相应增大,出水磷质量浓度最终维持在0.8mg/L,去除率达到91.8%,硝氮全部去除。通过对16S r RNA测序结果的比对,得到聚磷菌占总菌的76.93%,反硝化除磷菌占聚磷菌的一半以上。而聚糖菌仅占5.13%,聚磷菌成为优势菌种。此外,在整个驯化过程中,水质和环境条件的变化使出水中磷质量浓度出现波动,而出水硝氮的变化不大。研究表明,以硝酸盐作为主要氮源培养反硝化除磷细菌的方式是可行的,并有利于聚磷菌对聚糖菌的竞争,使聚磷菌成为优势菌种。  相似文献   

3.
亚硝酸盐对强化生物除磷系统的影响   总被引:1,自引:0,他引:1  
为了全面了解亚硝酸盐在生物除磷系统中的作用,采用SBR反应器,研究了亚硝酸盐对聚磷菌厌氧释磷、好氧吸磷的影响及短程反硝化除磷过程中各物质质量浓度之间的关系。结果表明,厌氧段释磷量随厌氧段投加NO-2-N质量浓度提高而增加,在厌氧段的后期出现了以NO-2为电子受体的吸磷现象。在好氧段投加亚硝酸盐,当NO-2-N质量浓度从5 mg/L升高到10 mg/L时,好氧吸磷速率随NO-2-N质量浓度提高而迅速降低,但当NO-2-N质量浓度超过10 mg/L后,好氧吸磷速率随NO-2-N质量浓度提高降低速度减缓。系统缺氧除磷量与NO-2-N消耗量、缺氧除磷量与PHB(聚-β-羟基丁酸)消耗量均呈线性关系。  相似文献   

4.
剪切力对好氧颗粒污泥的影响及其脱氮除磷特性研究   总被引:2,自引:0,他引:2  
以普通絮状活性污泥为接种污泥,以人工配制模拟生活污水为进水,采用有机负荷调控法,在SBR反应器内培养富含聚磷菌的好氧颗粒污泥,研究剪切力对好氧颗粒污泥理化特性及生物学特性的影响,并探讨好氧颗粒污泥的同步脱氮除磷特性.首先SBR以厌氧/好氧方式运行,采用有机负荷调控法培养出富含聚磷菌的好氧颗粒污泥,其粒径在1.0~2.0 mm,SVI在20~22 mL/g,MLVSS/MLSS为91.0%,活性污泥比耗氧速率(SOUR)为45.32 mg/(g·h).颗粒污泥具有良好的沉降性能和较高的生物量,磷酸盐去除率为78% ~ 99%.然后通过控制搅拌机转速研究4种不同剪切力(以剪切应力表示为0.120 N/m2、0.151 N/m2、0.184 N/m2、0.220 N/m2)条件下好氧颗粒污泥的颗粒化进程、颗粒污泥形态及生物活性.结果表明,当剪切力在0.120-0.220 N/m2之间时,剪切力越大,培养出的好氧颗粒污泥的结构越密实,形状越规则,生物活性越强;在一定范围内(0.120~0.184N/m2),剪切力越大,污泥的颗粒化进程越快,培养出的颗粒污泥的粒径越大;但当剪切力为0.220 N/m2时,污泥的颗粒化进程反而变慢,培养出的较大的颗粒污泥解体,颗粒污泥的粒径反而变小.最后采用逐渐增加进水NH;-N负荷的方法诱导具有同步脱氮除磷能力的好氧颗粒污泥,25d后,SBR对NH4+-N、TN、PO3-4--P的去除率分别达到99.7%、89.8%及94.5%.  相似文献   

5.
温度和COD对SBR反硝化同时除磷系统除磷能力的影响   总被引:4,自引:1,他引:4  
以除磷脱氮SBR(Sequencing batch reactor)系统作为研究对象,考查了温度和COD对其反硝化,以及除磷能力的影响.结果表明,反硝化除磷适宜温度范围为18~37℃.在此温度范围内反硝化除磷速率随温度升高而提高,而且温度变化基本上不影响反硝化除磷系统PO34-去除量和NO3-转化量之间的定量关系.同时实验还发现,反硝化同时除磷系统比传统的厌氧/好氧除磷系统节省33%的碳耗.当进水PO34--P质量浓度8.0~9.2 mg/L而COD质量浓度低至220~240 mg/L时就可以保证出水PO43--P质量浓度小于0.5 mg/L.而传统的厌氧/好氧SBR除磷脱氮系统则需将进水COD质量浓度提高至350 mg/L时才能实现这一目标.  相似文献   

6.
在除磷与脱氮的联合工艺中,由于两过程所涉及的微生物在性质及最佳代谢条件上有较大差别,在同一处理流程中很难达到协调而稳定地运行问题,在传统生物除磷工艺原理基础上,就新近发现的A2/O反硝化除磷技术新工艺及其微生物学原理特点,重点介绍A2/O反硝化除磷过程中的缺氧阶段中以NO-3作为最终电子受体时,厌氧条件下释磷规律,缺氧条件下磷的去除效果以及缺氧阶段氮的变化情况.  相似文献   

7.
新型单级自养脱氮与反硝化除磷耦合工艺   总被引:2,自引:0,他引:2  
反硝化除磷菌(Denitrifying Polyphosphate Accumulating Organisms,DPAOs)在缺氧段需要硝氮(NO-3-N)作为电子受体进行吸磷,而氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)和厌氧氨氧化细菌(Anaerobic ammonium oxidation,Anammox)恰好能够产生NO-3-N,基于此原理,将反硝化除磷菌与氨氧化细菌和厌氧氨氧化细菌进行联合培养,建立单级自养脱氮与反硝化除磷耦合工艺。该耦合工艺通过3个阶段的培养,在低碳氮磷比的条件下实现COD(Chemical Oxygen Demand)、氨氮及磷酸盐的同步高效去除(90%)。同时探讨了反硝化除磷细菌在不同碳源的条件下,各个化学指标(如挥发性脂肪酸、聚羟基脂肪酸等)的变化趋势及微生物群落多样性的变化情况。  相似文献   

8.
SBBR工艺脱氮除磷理论及影响因素   总被引:2,自引:0,他引:2  
主要对SBBR工艺的脱氮除磷反应机理进行了概述,并在此基础上深入分析了SBBR工艺要取得最佳处理效果必须考虑的几个重要影响因素,这对同时脱氮除磷有决定性的作用.  相似文献   

9.
10.
人工湿地作为一种污水处理系统受气温影响较大。针对冬季氮磷去除率的不足,分析低温对人工湿地脱氮除磷的影响,初步讨论了强化低温域人工湿地脱氮除磷的措施,对今后的研究方向进行了展望。  相似文献   

11.
针对城市污水处理厂出水氮磷含量浓度,比较了不同污水深度处理工艺对氮磷的去除效果。研究结果表明,微滤、超滤、活性炭吸附、反渗透等污水二级处理工艺对污水中氮磷去除效果较差,而使用反渗透和超滤结合的污水处理工艺脱氮除磷效果较好,除磷效果可以达到98%。  相似文献   

12.
以厌氧/好氧交替运行培养的具有脱氮除磷功能的颗粒污泥为对象,研究不同碳源条件下对除磷特性的影响。研究结果显示,醋酸钠为单一碳源培养的颗粒污泥呈淡黄色,粒径分布较均匀,主要为双球菌和短杆菌,磷平均去除率为84.77%,厌氧末端释磷量平均为89.76 mg/L,最大释磷和吸磷速率分别为106.33mg/(g·h)和50.92 mg/(g·h);乙酸钠葡萄糖为复合碳源培养的颗粒污泥呈白色和淡黄色,粒径分布不均匀,主要为单球菌,磷平均去除率为93.06%,厌氧末端释磷量平均为75.52 mg/L,最大释磷和吸磷速率分别为92.84 mg/(g·h)和28.23 mg/(g·h),两种碳源条件下表现出良好的除磷能力。  相似文献   

13.
为了加深对聚磷菌(Phosphate Accumulating Organism,PAOs)代谢多样性及代谢机理的认识,采用序批式反应器(Sequencing Batch Reactor,SBR),研究了PAOs单一好氧生物除磷能力的诱导过程,以及好氧时间、静置时间对单一好氧生物除磷效率的影响。结果表明,PAOs单一好氧环境生物除磷能力的诱导很快完成,SBR反应器运行周期内生物除磷过程分为饱食期与饥饿期,其中,饱食期水溶液中COD降解速度很快,磷酸盐质量浓度略有升高,PAOs体内聚-β-羟基丁酸(Poly-β-hydroxybutyrate,PHB)质量比增加,聚磷质量比降低;饥饿期水溶液中磷酸盐质量浓度持续下降,聚磷菌体内PHB质量比减小,聚磷质量比增加。聚磷菌在单一好氧环境条件下的除磷能力不能长期保持,只有保证足够的好氧时间及静置时间,才能取得高效的单一好氧环境除磷效果。  相似文献   

14.
长泥龄污水生物除磷系统的除磷效果   总被引:1,自引:0,他引:1  
为保证磷的去除率,城市污水处理厂生物除磷系统污泥龄一般控制在15 d左右.污泥龄越短,剩余污泥排放量越大,污泥处理费用越高.为探明长泥龄污水生物除磷系统的除磷效果及其作用机理,采用厌氧/好氧(A/O)交替运行的SBR反应器,以无水乙酸钠、葡萄糖、可溶性淀粉、蛋白胨为混合碳源,模拟城市污水处理系统,对污泥龄分别为12d、20d和48 d的生物除磷系统出水总磷质量浓度进行连续监测,研究污泥龄与胞内聚合物PHB(聚羟基丁酸)和PHV(聚羟基戊酸)质量比的关系.结果表明,对于进水COD为450 mg/L,总磷质量浓度达8 mg/L的城市生活污水生物除磷系统,由于碳源充足,污泥龄达到48 d仍能保证出水总磷质量浓度长期稳定达标,长泥龄不会影响除磷效果.由于我国生活污水水质的变化,城市污水处理厂最佳污泥龄约为48d.污泥龄对聚磷菌体内的PHA(聚羟基烷酸)质量比及组成有重要影响.随着污泥龄的增长,PHA总量增加,聚磷菌得到了更多的吸磷驱动力,好氧时间不断减少,除磷效率不断增加.随着污泥龄的增长,聚菌体内的PHV质量比增加,而PHB质量比基本不变,因此PHB在PHA中占的比例有所下降.  相似文献   

15.
脉冲电场在一定程度上可以强化厌氧氨氧化工艺,通过对持续运行的厌氧氨氧化反应器R1、R2、R3施加铁电极、铝电极、钛电极脉冲电场,探究电极材质对厌氧氨氧化工艺脱氮效果及菌群结构的影响。结果表明,R1的脱氮效果要优于R2、R3,经过76 d的连续培养,R1的总氮去除率为85.23%,而R2、R3的总氮去除率分别为68.65%、73.47%。同时长期培养导致3组反应器中的菌群结构较接种污泥发生了变化,根据Shannon和Simpson指数,反应器中微生物的群落多样性逐渐降低,R1中厌氧氨氧化菌属的相对丰度逐渐提升,至64 d, R1、R2、R3污泥中Candidatus Kuenenia的相对丰度分别为54.05%、42.06%、43.96%(接种污泥为44.69%)。铁电极脉冲电场强化更有利于厌氧氨氧化菌的富集及工艺脱氮性能的提升。  相似文献   

16.
采用混合稀释平板法,从富营养化湖泊底泥滇池中分离出1株高效聚磷菌,经分子生物学鉴定,推测其为红球菌属(Rhodococcus sp.),将其命名为Rhodococcus sp.H,并对菌株H在不同理化因素条件下的生长及除磷特性进行了研究。结果表明,该菌株在接种培养24 h后即能完成对数增长期,在pH值为6~7、温度为30℃时能获得较高生物量和除磷率,最佳碳源为乙酸钠和乙醇,最佳氮源为牛肉膏和蛋白胨。当温度高于35℃或低于15℃、p H值高于9或低于5时,菌株的生长会受到明显抑制,除磷率较低。同时研究表明,该菌株的生长会影响其生长环境基质的p H值,在一定范围内具有较强的p H值调节能力。该菌株能够有效利用乙酸钠和乙醇等小分子碳源获得较大生物量和较高的除磷效率,但是不能将铵盐作为唯一的氮源来利用。  相似文献   

17.
胞外聚合物蓄磷能力及与生物除磷的关系   总被引:2,自引:0,他引:2  
为探明胞外聚合物(EPS)在生物除磷过程中的作用,采用人工模拟城市污水,对不同污泥龄(SRT)下厌氧/好氧(A/O)交替运行的SBR生物除磷系统的除磷效果进行监测,并对单位质量的活性污泥中所包含的总磷质量、EPS中吸附的总磷质量以及细胞吸收的总磷质量进行测定.结果表明,当SRT小于48 d时,A/O-SBR城市污水生物除磷系统均能取得良好的除磷效果,连续监测出水总磷质量浓度均小于0.5 mg/L,达到《城镇污水处理厂排放标准》的一级标准.EPS具有一定的蓄磷能力,单位质量的活性污泥中EPS含磷量(简称EPS含磷量)不超过10 mgP/gVSS,而同质量的活性污泥中的细胞含磷量(简称细胞含磷量)最高可达38 mgP/gVSS.EPS含磷量不随SRT发生变化,SRT在12~48 d时,EPS含磷量约为10 mgP/gVSS;而细胞含磷量会随SRT发生变化,SRT在12~48 d时,细胞含磷量在20~38 mgP/gVSS之间变化.城市污水处理厂的活性污泥中细胞含磷量始终大于EPS含磷量,水中的磷酸盐主要以聚磷颗粒的形式储存于细胞内.在一个厌氧/好氧交替的反应周期内,EPS含磷量并不是一直保持在10mgP/gVSS,而是出现波浪形变化趋势,有时甚至可高达20 mgP/gVSS.这种波动能够调节聚磷菌(PAO)胞外磷酸盐浓度,有利手聚磷菌抵抗高磷酸盐负荷.但在反应结束时EPS含磷量又会恢复到反应开始前的水平.因此,EPS在生物除磷过程中主要起缓冲作用,是胞内聚磷合成的中转站.  相似文献   

18.
改进SBR工艺运行方式强化脱氮除磷的效果   总被引:8,自引:0,他引:8  
由于传统序批式活性污泥法SBR处理工艺的局限性,当要求同时进行有机物、氮和磷的去除时,基本的运行方式虽在有机物的去除方面可达到较为满意的处理效果,但难以达到满意的脱氮除磷效果.通过对SBR法运行工况分析后提出了兼有脱氮功能、除磷功能及同时具备脱氮除磷功能的3种不同运行方式的改进流程,从而在不改变原有SBR反应池主体结构的基础上可满足不同尾水排放标准的要求.  相似文献   

19.
介绍了循环序批式活性污泥反应器(KDCAS)的原理及工艺流程,研究分析了在不同水力负荷下脱氮除磷的效果.实验结果表明,由于KDCAS反应器自身的结构特点,只要工艺矩阵设置得当并保持合适的污泥龄范围,完全可以达到预期的脱氮除磷效果.但具体适宜的工艺矩阵需在以后的生产性实验中继续优化.经与UNITANK工艺相比,KDCAS工艺在除磷效果上表现出明显的优越性.  相似文献   

20.
取吸附-生物降解(AB)工艺A段沉淀池出水,利用投加硫酸铝(AS)和聚丙烯酰胺(PAM)化学强化后的沉淀污泥进行除磷实验,考察沉淀污泥除磷效果和化学强化对污泥沉降性能的影响.结果表明:化学强化的沉淀污泥对污水的11P和浊度有较好的去除效果,其去除率随As投药量的增加而提高;当泥水比为66.7%,PAM为0.05mg/L,AS投药量(以Al2O3计,下同)为15.1 mg/L时,对TP和浊度的去除率分别为75.0%和60.9%;AS投药量从0 mg/L增加至15.1mg/L,沉淀污泥对COD去除率维持在23%~40%,对氨氮无去除作用;同一投药量(As为7.5 mg/L,PAM为0.05 mg/L)下,TP去除率随泥水比增大而提高,氨氮质量浓度无明显变化;投加AS和PAM化学强化除磷,污泥沉降比和体积指数随AS投药量增加而降低,污泥沉降性能提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号