首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
特殊成形工艺下AZ31镁合金的织构及变形机制   总被引:4,自引:0,他引:4  
通过组织观察以及宏观和微观织构测定、分析了异步轧制及等径角轧制的AZ31镁合金形变机制,确定了在这两种工艺下{0001}基面织构的改善效果.结果表明:异步轧制产牛的平行于轧面的剪切力促进了与普通轧制状态下相反的基面滑移,使基面织构连续地弱化为倾转的基面织构;而等径角轧制通过产生与轧向成122.5°的剪切力,使基面取向的晶粒产生拉伸孪晶,形成与基面织构共存的柱面织构.因此这两种特殊工艺都可能改善镁合金的塑性.还分析了形变量和退火对织构的影响.  相似文献   

2.
A new rolling process, so-called as equal channel angular rolling (ECAR) process, for fabricating the magnesium alloy sheets with an enhanced formability at room temperature is introduced. The ECAR device was designed so that it could feed the sheet with the preheated temperature of 673 K in a continuous manner at a relatively high speed of 0.43 m/s. A significant amount of the shear deformation could be achieved by passing the sheet through the mold with the oblique angle of 115°. The x-Ray spectra were examined to analyze the crystal orientation of the sheets, which indicates that the crystal orientation with non-basal plane was fabricated after ECAR processing. The grain was not refined and plenty of twins were brought out because of the low-shear deforming temperature. The high stress and low ductility for the ECARed specimens can be related to the presence of twins. In spite of having the similar optical microstructure, the elongation to failure for the ECARed specimens after annealing was above 33%, which was larger than that of about 20% for the as-received/annealed specimens. And the drawability for the ECARed/annealed specimens with the Erichsen value of 6.24 mm and the limiting drawing ratio of 1.6 can be obtained, which is improved dramatically than that of 4.18 mm and 1.2 for the as-received/annealed specimens, respectively. These can be related to the rotation of (0002) basal plane toward the rolling direction because of the shear deformation induced by ECAR process.  相似文献   

3.
AZ31镁合金板材等径角轧制变形规律研究   总被引:3,自引:0,他引:3  
对等径角轧制过程中AZ31镁合金板材的应力应变状态进行了分析,采用有限元对不同通道间隙下板材的应变状态进行了模拟,研究了不同通道间隙下镁合金板材晶粒取向的演变规律及其对晶粒取向的影响。结果表明,在等径角轧制过程中,板材在模具转角处受到剪应力和压应力的作用;随通道间隙的增加,板材的变形由剪切变形演变为剪切+弯曲变形,甚至弯曲变形;由于剪应力的作用,AZ31镁合金板材的晶粒取向由普通轧制所形成的基面取向转变为等径角轧制后的非基面取向,随着剪切变形量的减小,基面沿轧制方向的偏转角度也逐渐减小。  相似文献   

4.
通道间隙对等径角轧制AZ31镁合金板材组织与性能的影响   总被引:1,自引:1,他引:0  
研究了不同通道间隙下,AZ31镁合金板材在等径角轧制过程中晶体取向的演化特征以及通道间隙对其显微组织和力学性能的影响.X射线衍射分析表明在等径角轧制过程中,随着通道间隙的减小,晶体取向变化加大,(0002)基面取向减弱.等径角轧制后,孪晶明显增多,且随着通道间隙的减小,孪晶数量逐渐增多.单向拉伸试验表明,等径角轧制后的板材,其变形行为和力学性能存在明显的各向异性特征,与等径角轧制前的板材相比,在轧向其屈服强度明显降低由轧制前的240MPa降至155MPa,抗拉强度略有增加,但随着通道间隙的减小,断裂延伸率略有增大;在横向其屈服强度和抗拉强度均增大,随着通道间隙的减小,屈服强度和抗拉强度略有减小,但断裂延伸率增大.  相似文献   

5.
Equal channel angular rolling, based on the equal channel angular pressing, is a severe plastic deformation process which can develop the grains below 1 μm in diameter. Microstructure, mechanical properties and electrical conductivity of commercial pure copper strips processed by equal channel angular rolling were investigated. Scanning electron microscopic micrographs of the strips produced by ten passes of equal channel angular rolling process showed nano-grains ∼70-200 nm in size. Also yield and tensile strengths and microhardness of samples increased with increasing the number of passes, whereas their ductility decreased. The electrical conductivity varied slightly. So via equal channel angular rolling process and by producing nano-grained pure copper, the strips can be strengthened with a little decrease in electrical conductivity but it has shortcomings of low elongation and strain hardening.  相似文献   

6.
TA15 titanium alloy was successfully processed for the first time by equal channel angular pressing (ECAP) in the temperature range of 900-1000 °C and annealed in a wide temperature interval from 650 to 800 °C. The investigation was achieved by light microscope (LM), scanning electron microscope (SEM) and transmission electron microscope (TEM) on the microstructure evolution of TA15 alloy subjected to ECAP and subsequent annealing after ECAP. In the present work, equal channel angular pressing (ECAP) was taken as the effective method to acquire severe plastic deformation (SPD). The studies we have performed show that grains have been obviously refined and well globularized after ECAP. When TA15 alloy was pressed at the temperatures of α + β phase region equiaxed microstructure was created. There was an increase in the equilibrium grain size with increasing pressing temperature, while a decrease in the volume fraction of equiaxed α phase. TEM microstructural images illustrate that an amount of deformation twins emerged while pressing TA15 below α-β transformation temperature (Tβ), which led to the continued plastic deformation through the restarting of many slip bands. Severe coarsening took place in β grains during ECAP at the temperature above Tβ. A larger number of well globularized and more homogeneous equiaxed α phase of TA15 alloy annealed after ECAP has been attained. Furthermore, with annealing at the optimum temperature, grains have not grown significantly.  相似文献   

7.
Multiple-stage transformation of Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated as a function of pass number and aging treatment before ECAP. When the pass number is no more than four passes, three stage transformation, namely A→R, R1→M1 and R2→M2, occurs in the as-ECAP processed alloy initially aged at 450 °C for 60 min. Only the A→R→M forward transformation occurs provided that the aging duration was decreased/increased to 10/600min. The transformation sequence was discussed based on the microstructure evolution of as-ECAP processed alloy with different initial microstructure and pass number.  相似文献   

8.
The deformation behavior within the deformation zone of a workpiece during equal channel angular pressing (ECAP) was investigated using the finite element method. The effects of die geometry on the variations of normal and shear deformations were studied with a deformation rate tensor (D). The zero dilatation line, at which the normal components (D11 and D22) of the deformation rate tensor (D) are zero, in the die coincided with the line of intersection of the two die channels irrespective of die geometry such as curvature angle (Ψ) and oblique angle (Φ), while the maximum shear line, at which the shear components (D12 and D21) of the deformation rate tensor (D) have maximum value, is dependant on the die geometry  相似文献   

9.
《Acta Materialia》2008,56(15):3800-3809
The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al–Zn–Mg–Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5°) deviation. Only the {1 1 1}〈1 1 0〉 and {0 0 1}〈1 1 0〉 shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss.  相似文献   

10.
采用等通道角轧制工艺(ECAR)对AZ31镁合金板进行轧制变形,结合光学显微镜、EBSD、杯突实验机和拉伸实验机等检测方法,研究了不同ECAR工艺对镁合金板微观组织及力学性能的影响。实验结果表明,AZ31镁合金板经ECAR工艺处理后,板材的平均晶粒尺寸出现下降,且板材的基面织构出现了明显地降低,由母材的8.187降低为4.537。此外,镁合金板材的综合性能得到显著提高,板材的杯突值由母材的2.72 mm增加到4.22 mm,n值由母材的0.27增加到0.46,抗拉强度由母材的275 MPa增加到294 MPa。综上所述,等通道角轧制工艺可以有效细化镁合金板材的微观组织,提高镁合金板材的综合力学性能。  相似文献   

11.
A new die design for equal channel angular pressing (ECAP) of square cross-section billet was proposed by a 45 rotation of the inlet and outlet channels around the channel axes. ECAP utilizing the rotated and conventional dies was simulated in three dimensions using the finite element method. Conditions with different material properties and friction coefficients were studied. The billet deformation behavior was evaluated in terms of the spatial distribution of equivalent plastic strain, plastic deformation zone and load history. The results show that the rotated die appears to produce billets with a smaller deformation inhomogeneity over the entire crosssection and a greater average of equivalent plastic strain at the cost of a slightly larger working load. The billet deformation enters into a steady state earlier in the case of the rotated die than the conventional die under the condition of a relatively large friction coefficient.  相似文献   

12.
等通道转角挤压过程中fcc金属的微观结构演化与力学性能   总被引:3,自引:0,他引:3  
系统总结了面心立方(fcc)金属材料在等通道转角挤压(ECAP)变形后的晶粒细化、微观结构演化规律和力学性能.根据ECAP变形的特点,利用具有特殊取向的Al单晶体和Cu双晶体,经过一道次ECAP挤压发现:材料在ECAP模具对角面附近发生严重塑性变形;除了沿模具对角面切应力的作用外,沿垂直于模具对角面的切应力也起重要作用.此外,通过设计特殊取向的Cu单晶体、Al单晶体和粗晶Cu-3%Si合金经过一道次ECAP挤压,系统研究了层错能、晶粒尺寸和晶体学取向对fcc金属形变孪生所需的孪生应力的影响.对具有不同层错能的Cu-Al合金进行多道次ECAP挤压表明,随着层错能降低,Cu-Al合金的晶粒细化机制逐步从位错分割机制转变为孪生碎化机制,最小晶粒尺寸逐步减小,具有较高或较低层错能材料比中等层错能材料更容易获得均匀的微观组织;Cu-Al合金的拉伸强度和均匀延伸率随着层错能的降低同步提高,即随着层错能的降低,Cu-Al合金的强度-塑性匹配性提高.  相似文献   

13.
The equal channel angular processing (ECAP) technique has been applied to an automotive aluminium alloy sheet (A6111). The technique utilizes a machine that was specially designed for this purpose at Monash University. It was determined that ECAP is able to refine the grain size of the sheet, diminish the detrimental as-rolled texture components in the sheet and retain an acceptable level of bi-axial ductility such as is required during the automotive forming process. Experiments were carried out on annealed, as-received sheets that were subjected to either one or two passes through the ECAP machine. For the second ECAP pass, the sheet could be processed in the same orientation as the first pass (route A) or it could be rotated 180° about the direction of feeding (route C). It was determined that route A produced marginally improved properties compared to sheet processed via route C, and that due to the frictional heating generated during the second pass, a significant amount of recovery occurred in the sheet such that an improved combination of texture and formability resulted after two passes compared to the same sheet exposed to only a single pass.  相似文献   

14.
The microstructure evolution and texture development of the intermetallic compound Ni76Al24, doped with minor additions of boron was investigated in great detail as a function of rolling reduction at ambient temperature.The microstructure was found to become extremely inhomogeneous by formation of microbands (MB) and shear bands (SB). Dislocation cell formation was not observed. The microstructure development is interpreted in terms of forced planar slip in the L12 crystal structure. This causes strong work hardening and destabilizes deformation by slip while shear-band formation is promoted. The rolling texture is very weak and resembles a weak copper-type texture up to high degrees of rolling. The strongest component is the brass orientation ({110}112) after large rolling reductions; it is attributed to orientations inside shear bands. No deformation twinning was observed, even for deformation at liquid nitrogen temperature.  相似文献   

15.
The commercially pure copper with dimension of 80 mm×20 mm×4 mm was used for equal channel angular pressing (ECAP), of which their outward appearance coordinate is corresponded with that of rolling deformation modes. Cold-deformed texture was investigated. The results show that the texture character in pure copper processed by ECAP is related with intersection angle (Ф) of the die channel. When Ф is 90° and the sample is extruded for one pass, its texture consists of α and β orientation lines including mainly C, B, S and Goss components, moreover a little rotated cube is found. When Ф is 135°, as extrusion pass increases, the weak texture forms on the scope of deviation from rotated cube (ψ=0°, θ=0°, Ф=45°+15°) and develops to the ψ=45° fiber mainly including rotated cube. When Ф is 120°, the texture is ψ=45° fiber mainly including rotated cube that is maintained constant as extrusion pass increases.  相似文献   

16.
The effect of speed ratio (SR) in differential speed rolling on the development of texture and microstructure in Mg-3Al-1Zn alloy was systematically investigated in a wide SR range between 1 and 3 at a fixed thickness reduction of 20%. At low SRs, deformation bands and shear bands were dominant. At high SRs ≥ 2, however, dynamically recrystallized microstructures were developed. The intensity of the basal texture component increased with SR, but decreased to the level of the starting material at high SRs ≥ 2. The occurrence of the dynamic recrystallization at high SRs was attributed to high-dislocation density accumulation and high temperature rise of a deforming sheet due to large plastic deformation of which amount increased with SR. The basal texture weakening at high SRs was attributed to extensive tension twinning that occurred in the basal-oriented matrix, which is rarely observed in conventional rolling. Due to the positive effect of texture and microstructure, tensile ductility improvement was significant as compared to that by symmetric rolling.  相似文献   

17.
Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°–50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.  相似文献   

18.
The thermomechanical coupling simulation of the isothermal equal channel angular pressing(ECAP) of Ti-6Al-4V alloy was conducted.The effect of processing parameters,ECAP pass number and the residual billet on the effective strain,stress and temperature distribution was investigated.Based on the coupling simulation results,it is found that the shear factor,ram speed,deformation temperature,channel intersection angle and residual billet significantly affect the ECAP deformation behaviors.Meanwhile,the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C,in which the repeated rotation angle around the longitudinal billet axis before reinsertion in the die was 180°,were conducted at a deformation temperature of 750°C,a ram speed of 0.3 mm·s-1,an outer arc of curvature of 60° and a channel intersection angle of 120°.Furthermore,a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy.The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.  相似文献   

19.
A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K.  相似文献   

20.
等通道转角挤压(Equal channel angular pressing,ECAP)方法是制备性能优异超细晶材料最常见的大塑性变形方法之一。模角、挤压路径、挤压道次、挤压温度和挤压速度等因素都会影响等通道转角挤压制备超细晶材料的性能;等通道转角挤压的模具也在不断地优化,如背压-等通道转角挤压(Back pressure ECAP,BP-ECAP)模具、可加热的模具以及在等通道转角挤压基础上形成的板材连续剪切技术等,这些新的模具可以改变ECAP变形过程中的组织均匀性。本文综述了等通道转角挤压制备超细晶材料的最新研究进展,并指出了几个需要深入研究的问题及方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号