首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我国地面降水的分级回归统计降尺度预报研究   总被引:1,自引:1,他引:1       下载免费PDF全文
利用TIGGE资料中欧洲中期天气预报中心(ECMWF,the European Centre for Medium-Range Weather Forecasts)、日本气象厅(JMA,the Japan Meteorological Agency)、美国国家环境预报中心(NCEP,the National Centers for Environmental Prediction)以及英国气象局(UKMO,the UK Met Office)4个中心1~7 d预报的日降水量集合预报资料,并以中国降水融合产品作为"观测值",对我国地面降水量预报进行统计降尺度处理。采用空间滑动窗口增加中雨和大雨雨量样本,建立分级雨量的回归方程,并与未分级雨量的统计降尺度预报进行对比。结果表明,对于不同模式、不同预报时效以及不同降水量级,统计降尺度的预报技巧改进程度不尽相同。统计降尺度的预报技巧依赖于模式本身的预报效果。相比雨量未分级回归,雨量分级回归的统计降尺度预报与观测值的距平相关系数更高,均方根误差更小,不同量级降水的ETS评分明显提高。对雨量分级回归统计降尺度预报结果进行二次订正,可大大减少小雨的空报。  相似文献   

2.
A timescale decomposed threshold regression(TSDTR) downscaling approach to forecasting South China early summer rainfall(SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR.The two models are developed based on the partial least squares(PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915–84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation(PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985–2006, compared to other simpler approaches. This study suggests that the TSDTR approach,considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.  相似文献   

3.
Statistical models for rainfall downscaling based on multiple linear regression techniques have been developed and tested in the Andean Region of west Argentina, an extended mountainous region where three different rain regimes predominate and rainfall has great spatial and temporal variability. The verification procedure was focused on the model’s ability to reproduce observed rainfall trends in recent decades. In the northwest of Argentina, domain of the tropical summer rain regime, the monthly rainfall variance accounted for by downscaling models was 77% on average and models reproduced satisfactorily the negative linear trend observed in the last two decades of the past century. In the arid central-west Argentina, a region of rapid transition between two different rain regimes, model performance was rather poor (an average of 50% of explained variance), even so models were able to capture outstanding differences in the linear trend between the northern and southern sectors of the region. In the southwest of Argentina, domain of the mid-latitude winter rain regime, the monthly variance accounted for by downscaling models was 71% on average and models were capable to reproduce a singular change in the onset of the rainy season that occurred during the 1990s. The results achieved demonstrate that it is feasible to establish significant and useful statistical relationships between atmospheric variables and rainfall at monthly and river basin scales, even for a topographically complex region like western Argentina.  相似文献   

4.
Manzanas  R.  Guti&#;rrez  J. M.  Bhend  J.  Hemri  S.  Doblas-Reyes  F. J.  Penabad  E.  Brookshaw  A. 《Climate Dynamics》2020,54(5):2869-2882
Climate Dynamics - The present paper is a follow-on of the work presented in Manzanas et al. (Clim Dyn 53(3–4):1287–1305, 2019) which provides a comprehensive intercomparison...  相似文献   

5.
Much of southeast Australia has experienced rainfall substantially below the long-term average since 1997. This protracted drought is particularly noticeable in those parts of South Australia and Victoria which experience a winter (May through October) rainfall peak. For the most part, the recent meteorological drought has affected the first half of the rainfall season May–June–July (MJJ), while rainfall during the second half August–September–October (ASO) has been much closer to the long term average. The recent multi-year drought is without precedent in the instrumental record, and is qualitatively similar to the abrupt decline in rainfall which was observed in the southwest of Western Australia in the 1960 and 1970s. Using a statistical downscaling technique, the rainfall decline is linked to observed changes in large-scale atmospheric fields (mean sea level pressure and precipitable water). This technique is able to reproduce the statistical properties of rainfall in southeast Australia, including the interannual variability and longer time-scale changes. This has revealed that the rainfall recent decline may be explained by a shift to higher pressures and lower atmospheric precipitable water in the region. To explore the likely future evolution of rainfall in southeast Australia under human induced climate change, the same statistical downscaling technique is applied to five climate models forced with increasing greenhouse gas concentrations. This reveals that average rainfall in the region is likely to decline in the future as greenhouse gas concentrations increase, with the greatest decline occurring during the first half of winter. Projected declines vary amongst models but are generally smaller than the recent early winter rainfall deficits. In contrast, the rainfall decline in late winter–spring is larger in future projections than the recent rainfall deficits have been. We illustrate the consequences of the observed and projected rainfall declines on water supply to the major city of Melbourne, using a simple rainfall run-off relationship. This suggests that the water resources may be dramatically affected by future climate change, with percentage reductions approximately twice as large as corresponding changes in rainfall.  相似文献   

6.
The performances of various dynamical models from the Asia-Pacific Economic Cooperation(APEC) Climate Center(APCC) multi-model ensemble(MME) in predicting station-scale rainfall in South China(SC) in June were evaluated.It was found that the MME mean of model hindcasts can skillfully predict the June rainfall anomaly averaged over the SC domain.This could be related to the MME's ability in capturing the observed linkages between SC rainfall and atmospheric large-scale circulation anomalies in the Indo-Pacific region.Further assessment of station-scale June rainfall prediction based on direct model output(DMO) over 97 stations in SC revealed that the MME mean outperforms each individual model.However,poor prediction abilities in some in-land and southeastern SC stations are apparent in the MME mean and in a number of models.In order to improve the performance at those stations with poor DMO prediction skill,a station-based statistical downscaling scheme was constructed and applied to the individual and MME mean hindcast runs.For several models,this scheme can outperform DMO at more than 30 stations,because it can tap into the abilities of the models in capturing the anomalous Indo-Paciric circulation to which SC rainfall is considerably sensitive.Therefore,enhanced rainfall prediction abilities in these models should make them more useful for disaster preparedness and mitigation purposes.  相似文献   

7.
Prediction of spring precipitation in China using a downscaling approach   总被引:1,自引:0,他引:1  
The aim of this paper is to use a statistical downscaling model to predict spring precipitation over China based on a large-scale circulation simulation using Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER) General Circulation Models (GCMs) from 1960 to 2001. A singular value decomposition regression analysis was performed to establish the link between the spring precipitation and the large-scale variables, particularly for the geopotential height at 500?hPa and the sea-level pressure. The DEMETER GCM predictors were determined on the basis of their agreement with the reanalysis data for specific domains. This downscaling scheme significantly improved the predictability compared with the raw DEMETER GCM output for both the independent hindcast test and the cross-validation test. For the independent hindcast test, multi-year average spatial correlation coefficients (CCs) increased by at least ~30?% compared with the DEMETER GCMs’ precipitation output. In addition, the root mean-square errors (RMSEs) decreased more than 35?% compared with the raw DEMETER GCM output. For the cross-validation test, the spatial CCs increased to greater than 0.9 for most of the individual years, and the temporal CCs increased to greater than 0.3 (95?% confidence level) for most regions in China from 1960 to 2001. The RMSEs decreased significantly compared with the raw output. Furthermore, the preceding predictor, the Arctic Oscillation, increased the predicted skill of the downscaling scheme during the spring of 1963.  相似文献   

8.
Two approaches of statistical downscaling were applied to indices of temperature extremes based on percentiles of daily maximum and minimum temperature observations at Beijing station in summer during 1960-2008. One was to downscale daily maximum and minimum temperatures by using EOF analysis and stepwise linear regression at first, then to calculate the indices of extremes; the other was to directly downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height records. The cross-validation results showed that the latter approach has a better performance than the former. Then, the latter approach was applied to 48 meteorological stations in northern China. The cross-validation results for all 48 stations showed close correlation between the percentile-based indices and the seasonal large-scale variables. Finally, future scenarios of indices of temperature extremes in northern China were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3) simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled Model Inter-comparison Project (CMIP5). The results showed that the 90th percentile of daily maximum temperatures will increase by about 1.5℃, and the 10th of daily minimum temperatures will increase by about 2℃ during the period 2011-35 relative to 1980-99.  相似文献   

9.
10.
Predicting Indian monsoon rainfall: a neural network approach   总被引:5,自引:0,他引:5  
The summer monsoon rainfall over India is predicted by using neural networks. These computational structures are used as a nonlinear method to correlate preseason predictors to rainfall data, and as an algorithm for reconstruction of the rainfall time-series intrinsic dynamics. A combined approach is developed which captures the information built into both the stochastic approach based on suitable predictors and the deterministic dynamical model of the time series. The hierarchical network so obtained has forecasting capabilities remarkably improved with respect to conventional methods.  相似文献   

11.
12.
13.
Statistical downscaling of daily precipitation over Sweden using GCM output   总被引:1,自引:2,他引:1  
A classification of Swedish weather patterns (SWP) was developed by applying a multi-objective fuzzy-rule-based classification method (MOFRBC) to large-scale-circulation predictors in the context of statistical downscaling of daily precipitation at the station level. The predictor data was mean sea level pressure (MSLP) and geopotential heights at 850 (H850) and 700 hPa (H700) from the NCEP/NCAR reanalysis and from the HadAM3 GCM. The MOFRBC was used to evaluate effects of two future climate scenarios (A2 and B2) on precipitation patterns on two regions in south-central and northern Sweden. The precipitation series were generated with a stochastic, autoregressive model conditioned on SWP. H850 was found to be the optimum predictor for SWP, and SWP could be used instead of local classifications with little information lost. The results in the climate projection indicated an increase in maximum 5-day precipitation and precipitation amount on a wet day for the scenarios A2 and B2 for the period 2070–2100 compared to 1961–1990. The relative increase was largest in the northern region and could be attributed to an increase in the specific humidity rather than to changes in the circulation patterns.  相似文献   

14.
The author “Bhaski Bhaskaran” and his affiliation “Fujitsu Laboratory of Europe, Middlesex, UK” should be replaced by “Balakrishnan Bhaskaran”, “Fujitsu Laboratories of Europe Limited, Hayes Park, Middlesex, UK”, respectively.The corrected name and affiliation are shown in this erratum.  相似文献   

15.
16.
谢仁波 《贵州气象》2010,34(2):15-17
利用印江气象站的逐日降水资料,在对该站点极端降水和极端强降水过程阈值进行科学界定的基础上,对50 a来极端降水和极端强降水过程进行了常规统计。结果表明:印江极端降水和极端强降水过程有弱的增加趋势,极端(强)降水天数与降水量成正相关,20世纪60年代极端降水天数和极端强降水的离散程度最大,21世纪前8 a极端强降水的离散程度最小。极端降水和极端强降水日数变化均达不到气候突变的标准。  相似文献   

17.
利用动力季节模式输出的匹配域投影技术和多模式集合预报技术对多个国家和城市的站点月平均降水进行预报。预报变量是北京1个站、韩国60个站和曼谷地区8个站点的月平均降水,预报因子是从多个业务动力季节预报模式输出的多个大尺度变量。模式回报数据和站点观测降水数据时段是1983—2003年。降尺度预报降水的技巧是在交叉验证的框架下进行的。匹配域投影方法是设定一个可以活动的窗口在全球范围内大尺度场上进行扫描,寻求与目标站点降水最优化的因子和最相关的区域,目标站点的降水变率就是由该匹配域上大尺度环流场信息决定的。最终预报是用多个降尺度模式预报结果的集合预报(DMME)。多个降尺度模式预报结果的集合预报能显著地提高站点降水的预报技巧。北京站,多个降尺度模式预报结果的集合预报的预报和观测降水的相关系数可以提高到0.71;韩国地区,多个降尺度模式预报结果的集合预报平均技巧提高到0.75;泰国,多个降尺度模式预报结果的集合预报技巧是0.61。  相似文献   

18.
This study presents a comprehensive assessment of the possible regional climate change over India by using Providing REgional Climates for Impacts Studies (PRECIS), a regional climate model (RCM) developed by Met Office Hadley Centre in the United Kingdom. The lateral boundary data for the simulations were taken from a sub-set of six members sampled from the Hadley Centre’s 17- member Quantified Uncertainty in Model Projections (QUMP) perturbed physics ensemble. The model was run with 25 km × 25 km resolution from the global climate model (GCM) - HadCM3Q at the emission rate of special report on emission scenarios (SRES) A1B scenarios. Based on the model performance, six member ensembles running over a period of 1970-2100 in each experiment were utilized to predict possible range of variations in the future projections for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095) with respect to the baseline period (1975-2005). The analyses concentrated on maximum temperature, minimum temperature and rainfall over the region. For the whole India, the projections of maximum temperature from all the six models showed an increase within the range 2.5°C to 4.4°C by end of the century with respect to the present day climate simulations. The annual rainfall projections from all the six models indicated a general increase in rainfall being within the range 15-24%. Mann-Kendall trend test was run on time series data of temperatures and rainfall for the whole India and the results from some of the ensemble members indicated significant increasing trends. Such high resolution climate change information may be useful for the researchers to study the future impacts of climate change in terms of extreme events like floods and droughts and formulate various adaptation strategies for the society to cope with future climate change.  相似文献   

19.
利用欧洲中期天气预报中心(ECMWF)、日本气象厅(JMA)、美国国家环境预报中心(NCEP)以及英国气象局(UKMO)四个中心1~7 d日累计降水量集合预报资料,以中国降水融合产品作为"观测值",对我国地面降水量进行统计降尺度预报,并对预报降水的空间相关性和时间连续性进行重建。对降水量进行分级后,建立各个量级的回归方程进行统计降尺度预报。此外,还利用Schaake Shuffle方法重建丢失的空间相关性和时间连续性。结果表明,分级回归比未分级回归后的预报结果相关系数更高,预报误差更小,更接近观测值。Schaake Shuffle方法可以有效地改进降水预报的空间相关性和时间连续性,使之更接近实况观测,集合成员间的相关性也更好。  相似文献   

20.
基于TIGGE多模式降水量预报的统计降尺度研究   总被引:7,自引:0,他引:7  
王海霞  智协飞 《气象科学》2015,35(4):430-437
利用TIGGE资料中欧洲中期天气预报中心、美国国家环境预报中心、英国气象局以及日本气象厅4个中心,1~7 d预报时效的降水量预报资料,以TRMM/3B42RT降水量作为"观测值",对东亚地区降水量进行统计降尺度处理。首先利用逻辑回归方法将天气分为有雨和无雨,再对有雨的情况,利用线性回归方法对插值后的预报结果进行降尺度订正,最后将4个中心的预报值进行消除偏差集合平均,得到多模式集成的降水量预报场。结果表明:逻辑回归能够有效地改善预报中小雨的空报情况,统计降尺度订正后的预报结果比直接插值更加准确,多模式集成的预报效果优于单模式结果,其改进效果随预报时效的延长逐渐减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号