首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
青藏高原多年冻土区斜坡类型及典型斜坡稳定性研究   总被引:23,自引:2,他引:23  
冻土区斜坡稳定性是青藏高原工程建设必须面对和解决的问题之一. 介绍了青藏高原多年冻土区斜坡失稳的主要类型, 包括崩塌型、蠕变型、泥流阶地型、表土植被层蠕滑型及热融滑塌型等. 其中热融滑塌型对于高原环境、尤其是植被及工程的危害最为显著, 该类斜坡的诱发因素一般为工程开挖或工程活动对冻土的热扰动, 斜坡失稳的根本原因在于多年冻土融化后强度的减弱或丧失. 在分析了热融滑塌型滑坡失稳机理的基础上, 提出了滑坡治理的原则与工程措施方案建议.  相似文献   

2.
青藏铁路多年冻土区路基变形特征及其来源   总被引:3,自引:0,他引:3  
基于青藏铁路多年冻土区34个路基监测断面2005-2011年的变形与地温资料,分析路基的变形特征及其来源。监测结果表明:①监测期累计变形量大于100 mm的断面均为普通路基,其变形主要来自路基下部因冻土上限下降而引起的高含冰量冻土的融沉变形以及融土的压密变形,其次为路基下部多年冻土因地温升高而产生的高温冻土的压缩变形。②监测期累计变形量小于100 mm的普通路基与块石结构路基断面,其变形主要来自路基下部多年冻土的压缩变形。③总体而言,块石结构路基变形量明显小于普通路基,从而验证了主动冷却措施的长期有效性。其研究结果可为冻土区路基稳定性判断及病害预警提供数据支持。  相似文献   

3.
青藏铁路多年冻土斜坡段路基稳定性对铁路长期运营具有潜在的威胁,分析评价当前和未来斜坡路基稳定性可指导路基工程的正确设计和施工,从而保证铁路的安全运营。多年冻土地温变化使斜坡路基稳定性分析不同于普通土路基,其冻融交界面位置是制约斜坡路基稳定性的关键所在。通过对安多试验段3a来的地温监测,分析路基地温变化规律,并预测了未来50a内试验段地温的变化趋势,建立了当前和未来条件下的斜坡路基稳定性模型,计算分析了斜坡路基的稳定性。通过上述研究,取得以下认识和结论:(1)铁路路堤的填筑,引起多年冻土温度场重分布;由于坡向不对称和几何不对称,使得地温场存在不对称;(2)依据冻融界面位置和活动层的地温特征将冻土路基划分为4个不同时期,即冬季严寒期(1~2月)、春夏融化活动期(3~8月)、最大融深期(9~10月)及回冻活动期(11~12月);通过计算对比分析,每年最大融深期的稳定性系数最小;(3)数值分析的预测结果表明,20a以后,安多段试验段路基的多年冻土完全退化,在所预测的第10年最大融深期稳定性系数最小。  相似文献   

4.
多年冻土区斜坡稳定性研究综述   总被引:1,自引:0,他引:1  
全球变暖、极端天气频发,引发的地质灾害对自然生态环境和人类生产生活造成了很大的影响。尤其对气候变化较为敏感的高温(年平均地温>-1 °C)和高含冰量多年冻土区,气候变暖以及人类活动导致的冻融地质灾害日益频繁。冻土退化条件下,土体结构和物理力学性质发生改变,黏聚力和抗剪强度降低,造成多年冻土区斜坡发生滑坡、崩塌、泥流等灾害。斜坡失稳加剧了多年冻土区脆弱生态环境的恶化,同时对建(构)筑物安全运营产生威胁。与非冻土区相比,多年冻土区斜坡稳定性研究主要针对高含冰量斜坡段,斜坡失稳模式主要以热融滑塌和活动层滑脱为主。热融滑塌由斜坡段地下冰暴露融化引起,而活动层滑脱产生的原因是冻土融化导致土体孔隙水压力过大,形成的超孔隙水压力降低了土体强度,造成斜坡失稳。此外,多年冻土区斜坡失稳模式还包括融冻泥流、崩塌以及蠕变滑坡等。通过综述近期多年冻土区斜坡稳定性研究进展,概括了多年冻土区斜坡失稳的模式、特征、影响因素、失稳机理、分析方法及防治措施等,并对未来多年冻土区斜坡失稳的研究重点提出建议。  相似文献   

5.
青藏铁路斜坡段路基是铁路长期运营潜在的不安全隐患,评价现今和未来斜坡路基稳定性能为铁路安全通行提供保证。多年冻土斜坡路基稳定性分析不同于普通土路基,冻融交界面位置是斜坡路基稳定性重要影响因素。本文通过监测安多试验段的变形特征,详细分析了各个地段路基的变形规律,建立了斜坡路基稳定性评价模型。  相似文献   

6.
青藏高原清水河多年冻土区铁路路基沉降变形特征研究   总被引:3,自引:1,他引:3  
通过埋设在青藏铁路路基中两个断面内的6条沉降观测管3 a来的地基沉降变形资料,研究了高原多年冻土区铁路路基的沉降变形特征,分析了填筑铁路路基对下伏多年冻土融化变形的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土上限在施工初期会有一个明显的下移沉降,铁路路基也随之有一个较大幅度的工后下沉变动,随着时间的推移,路基下降速率会逐渐下降,但在短时间内不会停止下来,而且由于太阳辐射和路基边坡形状的影响,路基向阳面与背阴面的变形有较大的差别,且在近南北向展布的路基上表现最为明显。  相似文献   

7.
多年冻土地区构筑物沉降变形分析   总被引:2,自引:0,他引:2  
根据现场观测和数值分析,将多年冻土地区构筑物的沉降变形归结为几个具有不同机制的物理力学过程共同作用所致。伴随着冻土上限下降所产生的融沉,由于构筑物的修建引起多年冻土层升温而产生的高温冻土的蠕变和活动层的未冻土在暖季发生的蠕变,以及由于活动层中冻融循环改变了土的工程性质而导致的附加沉降变形。基于青藏公路和青藏铁路的修建和维护的实践,分析了以上几个可能引起沉降的原因。  相似文献   

8.
青藏铁路在多年冻土南界地区,夏季强降雨后的入渗,不仅破坏了冻土路基内地温场,降低了土体的强度,同时入渗产生的渗透压力降低了斜坡路基的稳定性。文章采用有限元对青藏铁路安多段多年冻土斜坡路基进行降雨入渗的模拟,并将渗流分析结果作为路基稳定性计算的水力条件。计算结果表明,该冻土斜坡稳定性系数在降雨结束20h内持续变小,而最小值出现在降雨后2d左右。  相似文献   

9.
青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究   总被引:29,自引:18,他引:29  
为彻底了解和治理青藏公路多年冻土段路基病害,选择昆仑山垭口和66道班两种不同并土类型路段,首次在沥青路面上开展路面辐射和热量平衡观测,并同时和路旁天然场地自然下垫面进行同项目的对比观测,通过观测和计算,研究了不同冻土类型路沥青路面下热量收支状况及路基热量年周转,找出了致使路基沉陷及产生融化核的根本原因,并对路基内融化核形成演化及其稳定性进行分析,计算了路基下人为上限达到最大深度及所需时间和融化核的最终稳定厚度,为青藏公路整治提出了可行性措施。  相似文献   

10.
青藏高原多年冻土地区公路路基变形   总被引:60,自引:22,他引:60  
通过对现场实体工程的长期监测资料和路基破坏机理分析研究,使我们对沥青路面对多年冻土的严重影响,导致多年冻土的升温与退化,使路基产生较严重的不均匀下沉变形,及其它所引起的一系列路基病害问题的发生发展过程有了较为系统和深刻认识,取得了大量现场实测资料及研究成果.讨论了高温多年冻土地区冻土路基的变形特征,以及冻土路基变形与工程地质条件的关系,给出了路基随地温波动变化而发生的变形过程。  相似文献   

11.
四川盆地红层分布广泛,其特殊的工程特性常导致严重的地质灾害。通过分析成仁高速文宫连接线边坡的变形破坏特征,得出边坡在开挖和降雨的影响下破坏机制为蠕滑-拉裂。进一步用FLAC3D进行数值分析,显示开挖卸荷和降雨影响导致滑坡灾害,其后缘发生拉裂破坏,并引发滑坡前部发生剪切滑移破坏。针对该类型的边坡,开挖后应对路堑以上部分及时采取加固措施,避免降雨入渗软化土体,加剧滑坡变形破坏。  相似文献   

12.
青藏铁路多年冻土区斜坡路堤的稳定性分析   总被引:1,自引:0,他引:1  
杨让宏  朱本珍 《岩土力学》2011,32(7):2117-2122
通过分析目前青藏铁路多年冻土区斜坡路堤稳定性状况的本质特点,结合目前稳定性计算分析方法研究现状,切合实际地提出了从热学和力学两方面分别进行分析和计算,并综合评价斜坡路堤稳定性的方法。通过现场典型断面的计算分析可以看出:①对于热力学属性呈动态变化的斜坡路堤,分析其最不利状况可以得到符合实际的稳定性状况结果;②当斜坡路堤处于热学稳定状态时,其力学稳定性也可能呈现不稳定情况,所以需要从热、力学两方面共同分析其稳定性才能得到较为全面的符合现场实际的结论。此方法原理简单、结果明确,对于多年冻土区斜坡路堤在运营阶段的稳定性分析和评价具有重要的指导意义  相似文献   

13.
胡勇刚  罗强  张良  黄晶  陈亚美 《岩土力学》2010,31(7):2207-2213
为充分掌握斜坡软弱土地基在路堤荷载作用下的变形特性,寻求合理的地基加固措施,以新建达成铁路扩能改建工程某工点为原型,设计了5组基于水泥土搅拌法地基处理方案的室内土工离心模型试验。通过对试验数据的整理分析,结果表明:(1)针对斜坡软弱土地基的上、下坡侧分别采取不同的桩间距布设,可减小斜坡软弱土地基沿横向的差异沉降变形,提高地基加固的均匀性;(2)在斜坡软弱土地基的下坡一侧布设斜桩,具有较好的水平变形约束效果,但在竖向沉降控制方面表现略差;(3)斜坡软弱土地基下坡一侧产生的变形将引起上坡一侧产生相同方向的变形,并以水平变形的表现较明显,地基加固应以控制下坡一侧的变形为重点;(4)地基水平变形沿深度的变化规律因地基布桩疏密的不同而表现出先增大后减小的单峰型曲线和单调衰减的双曲线型两种形态。  相似文献   

14.
路基边坡的植物防护方法   总被引:6,自引:0,他引:6  
针对目前公路边坡防护的现状及发展趋势,较系统地介绍了多种路基边坡植物防护方法,并指出了公路路基边坡植物防护方法中需要进一步研究和解决的问题。   相似文献   

15.
霍明  陈建兵  章金钊 《岩土力学》2009,30(Z2):263-268
目前黑龙江省对多年冻土区的公路路基下冻土的处理措施主要是以清除为主,文中分别通过现场试验以及数值模拟计算,针对清基与否对路基产生的影响进行了分析。研究发现,对路基基底处理的方案采用清基或不清基方案均是可行的,但清基对路基的热稳定性是不利的。清基对路基温度场较显著的影响发生在施工完成后的1-3年内,在此期间人为上限变化较大,但还不至于造成路基路面的大面积融沉破坏;清基的长期影响是使多年冻土区年平均地温升高, 使路中人为上限下降;清基会使路基内提前约4个月发育融化核,并且融化核厚度也增加0.3~0.6 m;清基对路基温度场造成较大影响的主要影响因素是施工季节与清基后回填土体的初始温度。  相似文献   

16.
多荷载作用下层状土路基的力学特性研究   总被引:1,自引:0,他引:1  
依据荷载叠加理论,建立了动、静荷载耦合作用下的加载模型,并提出了组合荷载、组合应力、组合沉降变形等概念;根据相似理论建立层状土路基模型,通过室内相似模型试验,对层状土路基在动荷载和静荷载耦合作用下的应力、变形发展规律进行研究,保持动载不变,通过改变静载的大小,研究动、静组合荷载作用下层状土路基的应力和沉降变化规律。结果表明:层状土路基中,各层的组合应力和组合变形随组合荷载的增加而增大,且呈线性变化;组合荷载、沉降变形随着深度的增加呈非线性减小,并成指数函数递减。其结果为公路路基的设计、施工、运行和维护提供了参考依据。  相似文献   

17.
黄土路堑边坡开挖变形机理的离心模型试验研究   总被引:2,自引:1,他引:2  
利用离心模型试验揭示了黄土路堑边坡在开挖过程中的变形破坏特征,结果表明:开挖前,坡体变形以自重应力作用下的竖向变形为主,开挖后,堑坡坡体中后部土体以垂直向下变形为主,前部土体变形以水平变形为主,而且坡体前部的变形远大于中后部的变形;同时结合变形特征,系统分析了黄土路堑边坡开挖过程中主滑段滑带土的强度变化规律,认为黄土路堑边坡开挖变形破坏的力学机制总体上应属于蠕滑-压致拉裂机制.  相似文献   

18.
为分析冻融过程、 道砟覆盖及降雨对多年冻土区铁路路基土体导热系数的影响, 对青藏高原多年冻土区铁路路基试验段和天然地表土体开展导热系数、 温度、 水分原位监测。结果表明: 融化期导热系数波动均明显大于冻结期, 天然场地导热系数在冻结期大于融化期, 而无道砟覆盖路基土体和道砟覆盖路基土体的导热系数在冻结期小于融化期, 与通常的认知和温度场模拟取值相反; 道砟层的保温和阻水效应导致道砟覆盖路基土体含水量和导热系数均小于无道砟覆盖路基土体, 冻结期路基土体导热系数有减小趋势, 道砟覆盖路基土体尤为显著; 降雨入渗增大土体导热系数, 低含水量的道砟覆盖路基土体导热系数对降雨的响应最强烈。寒区路基工程数值模拟时, 应考虑水热变化对导热系数的影响, 不宜采用固定相变区间的分段函数或阶跃函数预估导热系数。  相似文献   

19.
无碴轨道路基基床动力特性的研究   总被引:5,自引:0,他引:5  
詹永祥  蒋关鲁 《岩土力学》2010,31(2):392-396
以遂渝线无碴轨道路基为背景,通过室内模型试验研究,分析了在循环加载条件下路基基床的动态力学特性。试验结果表明,动应力响应在基床表层横断面方向上呈“W”形分布,混凝土基础板轨下位置响应最大,中线处和端部响应较小,但随着深度的增加,逐渐变为盆形分布特征;在基床表层范围内,动态响应最为强烈,且随深度的增加,衰减速率较快;加载频率对动应力影响较小,对动位移及加速度影响较大。另外,在遂渝线无碴轨道综合试验段现场实车试验中,分别进行了CRH2型动车组和货物列车不同运行速度下路基基床的动力学响应测试研究,验证并评价了遂渝线无碴轨道路基基床工程适应性。  相似文献   

20.
降雨条件下土坡变形机制的离心模型试验研究   总被引:3,自引:0,他引:3  
钱纪芸  张嘎  张建民 《岩土力学》2011,32(2):398-402
自行研制了离心场降雨模拟设备,进行了降雨条件下边坡的离心模型试验。试验模型在离心机中加载到50g,然后开始降雨。采用非接触位移测量系统测量了试验过程中边坡的位移场变化,通过T5张力计测量边坡中典型点的吸力变化。试验结果表明,边坡的位移随降雨量的增大逐渐发展,发生明显变形的区域也逐渐变大,主要集中在边坡表面。边坡某处应变迅速变化的时刻与土体含水率迅速增大的时刻相一致。边坡某点的应变随降雨量的增加不断增大,并存在2个拐点,形成湿润锋和稳定锋2个锋面,并把边坡分成3个区域,通过锋面的变化反映降雨条件下边坡的变形过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号