首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
【目的】探讨转cry1Ab/cry2Aj和G10evo-epsps基因玉米双抗505-12-5中外源Bt蛋白时空表达规律,对3种主要鳞翅目害虫亚洲玉米螟、黏虫和棉铃虫的抗性进行鉴定,为转基因玉米双抗505-12-5的商业化推广提供科学的数据支撑。【方法】Bt蛋白时空表达规律采用酶联免疫法(ELISA),田间抗虫性和室内抗虫性鉴定分别采用田间人工接虫和离体组织生测方法。【结果】在玉米6~8叶期,Bt含量表现为根心叶茎,分别为517.3、453.8和312.8 ng·g~(-1);大喇叭口期,Bt含量表现为心叶根茎,分别为353.3、281.3和232.9 ng·g~(-1);吐丝期,Bt含量表现为心叶根茎,分别为188.9、114.1和53.6 ng·g~(-1);乳熟期,根、茎和心叶含量相当,分别为178.0、160.3和185.4 ng·g~(-1);繁殖器官中Bt蛋白含量表现为籽粒花丝花粉雄穗,分别为181.3、100.1、95.0和79.8 ng·g~(-1)。室内抗虫性鉴定表明,转基因玉米双抗505-12-5心叶饲喂黏虫24 h,幼虫死亡率低,但48 h后达98.21%;双抗505-12-5心叶、花丝和籽粒饲喂玉米螟,24 h幼虫死亡率分别为87.37%、100%、100%;双抗505-12-5花丝饲喂棉铃虫,24 h幼虫死亡率达80.18%,48 h死亡率为92.45%。田间鉴定结果显示,转基因玉米双抗505-12-5在心叶期和雌穗期对玉米螟、心叶期对黏虫、雌穗期对棉铃虫的抗性均达高抗水平。【结论】转基因玉米双抗505-12-5各器官在不同生育期中均能表达Bt蛋白,尤其在鳞翅目害虫为害的主要时期6~8叶期和吐丝期及乳熟期,易受害器官中Bt蛋白表达量较高。转基因玉米双抗505-12-5田间及室内对3种鳞翅目害虫均表现了显著的抗性效果,具有推广应用的潜力。  相似文献   

2.
利用农杆菌介导法将Bt cry1Ah基因转入玉米自交系综31,获得对玉米螟有显著抗性的转基因玉米HGK60,为了研究其对鳞翅目害虫的杀虫活性,在室内和田间分别用亚洲玉米螟、棉铃虫和黏虫幼虫对HGK60玉米的杀虫效果进行检测。室内生物活性检测结果表明,取食HGK60玉米心叶的亚洲玉米螟幼虫在3 d后死亡率达100%;HGK60玉米对棉铃虫幼虫有毒杀作用,玉米不同部位对棉铃虫幼虫的杀虫效果存在差异;与非转基因玉米对照相比,取食HGK60玉米叶片一周后的黏虫幼虫体重增长明显受到抑制。田间生物活性检测结果表明,HGK60玉米对于亚洲玉米螟和棉铃虫有很强的杀虫活性,达到高抗级别,对于黏虫有一定的杀虫活性,为抗性级别。  相似文献   

3.
苏云金芽胞杆菌cry2Ad基因的克隆及其表达产物的活性分析   总被引:2,自引:0,他引:2  
苏云金芽胞杆菌(Bacillus thuringiensis,Bt)SBT2是我国新分离出的一株野生菌株.扫描电镜显示该菌株产生双锥体形晶体.琼脂糖凝胶电泳发现其质粒图谱含有5个条带.聚丙烯酰胺凝胶电泳显示此菌株产生130 kD晶体蛋白.利用PCR-RFLP法进行杀虫基因类型鉴定,发现其含有cry1Aa、cry1Da、cry1Hb、cry1Jb、cry1Ka 、cry1Ib、基因.Cry2Ad蛋白的活性至今未见研究报道,本研究克隆和测序了该基因.并对其进行了表达.生物活性测定结果表明其表达产物对舞毒蛾(Lymantria dispar)、棉铃虫(Helicoverpa armigera)、亚洲玉米螟(Ostrinia furnacalis)、小菜蛾(Plutella xylostella)有低活性;对大猿叶甲(Colaphellus bowringi)无活性.  相似文献   

4.
以我室自行分离的对鳞翅目夜蛾科害虫具有高毒力的Bt菌株B-Pr-88为材料,用PCR-RFLP方法从其质粒DNA文库中筛选到含cry2Ab基因的一个阳性克隆pZF858,序列测定发现,该片段含有cry2Ab全长基因,开放读码框为1902bps,编码由633个氨基酸组成的70.7kD蛋白,氨基酸同源性与已公布的cry2Ab基因同源性均为99.8%,经Bt基因国际命名委员会正式命名为cry2Ab4。根据cry2Ab4基因开放阅读框架(ORF)两端序列,设计合成一对特异引物L2ab5和L2ab3,PCR扩增获得cry2Ab4完整ORF,与大肠杆菌表达载体pET-21b连接,构建了重组表达质粒pET-2Ab4,质粒导入大肠杆菌BL21(DE3),IPTG诱导后,SDS-PAGE电泳证实该基因表达了60kD的蛋白,生物测定表明,Cry2Ab4对棉铃虫和大豆食心虫具有高毒力,同时对小菜蛾和二化螟有一定的杀虫活性,而对亚洲玉米螟和甜菜夜蛾没有杀虫活性。  相似文献   

5.
贺明霞  何康来  王振营  王新颖  李庆 《昆虫学报》2013,56(10):1135-1142
亚洲玉米螟Ostrinia furnacalis (Guenée) 是危害玉米的重要害虫之一, 转Bt基因抗虫玉米为其防治提供了新的途径。然而, 靶标害虫产生抗性将严重阻碍Bt制剂及转Bt基因抗虫玉米的持续应用。明确害虫对转Bt基因玉米表达的毒素蛋白的抗性演化, 对于制定科学有效的抗性治理策略具有重要的理论和实际意义。本实验通过人工饲料汰选法研究了Bt Cry1Ie毒素胁迫下亚洲玉米螟的抗性发展及汰选14代的种群对其他Bt毒素(Cry1Ab, Cry1Ac和Cry1Fa)的交互抗性, 并观察了Cry1Ie蛋白胁迫对亚洲玉米螟生物学的影响。结果表明: 随着汰选压不断提高, 亚洲玉米螟种群对Cry1Ie毒素的敏感性逐渐下降。汰选14代后, 种群对Cry1Ie毒素的抗性水平提高了23倍。然而, Cry1Ab, Cry1Ac和Cry1Fa对所获Cry1Ie汰选种群的毒力与对敏感种群的毒力相比没有显著差异, 说明Cry1Ie汰选没有引起亚洲玉米螟对Cry1Ab, Cry1Ac和Cry1Fa毒素产生交互抗性。同时, 与敏感种群相比, Cry1Ie汰选14代的种群幼虫平均发育历期延长5.7 d, 蛹重减轻13.7%, 单雌产卵量下降40.0%。本研究结果说明, 大面积单一种植转cry1Ie基因抗虫玉米, 可能引起亚洲玉米螟产生抗性; 亚洲玉米螟Cry1Ie抗性种群对Cry1Ab, Cry1Ac和Cry1Fa没有交互抗性, 含有cry1Ie和cry1Ab, cry1Ac或cry1F双/多基因抗虫玉米, 可作为靶标害虫抗性治理的重要策略。  相似文献   

6.
为明确农田生境灯下蛾类群落结构和优势蛾的生态位特点,2017-2021年在漯河市郊区农田利用虫情测报灯对蛾类进行了逐日监测分析。结果表明,5年共诱集蛾类昆虫11科121种150 861头,统计得到个体数量(N)、物种丰富度(S)、群落多样性指数(H)、相似性系数(Cs)、生态位宽度(Bi)和生态位重叠(Cij)等相关群落数据参数。3-11月农田灯下蛾类个体数量、物种丰富度和群落多样性指数,均随时间呈先增加后减小的趋势;不同月份间的群落相似性指数差异较大。年度优势蛾为东方黏虫M. separata、棉铃虫Helicoverpa armigera和甜菜夜蛾Spodoptera exigua 3种。月度优势蛾共9种,其中亚洲玉米螟Ostrinia furnacalis和棉铃虫的生态位宽度最大0.4434和0.4002,东方黏虫最小(0.1811);棉铃虫和甜菜叶螟Hymenia recurvalis与其余8种优势蛾的生态位重叠指数均较大,而东方黏虫和其余优势蛾的生态位重叠指数均较小。研究结果为开展蛾类监测预警和有效防治提供参考数据。  相似文献   

7.
对苏云金芽孢杆菌C002菌株cry2Ab基因阳性克隆pHT3152Ab进行亚克隆和序列测定,在CenBank注册后经国际Bt杀虫蛋白基因委员会正式命名为cry2Ab3。序列分析表明该基因含有芽孢杆菌特异的RBS序列,但没有功能性启动子,为沉默基因。根据大肠杆菌T7表达载体pET21b克隆位点和cry2Ab3开放阅读框架(ORF)两端序列,设计合成一对特异引物L2ab5和L2ab3,高保真PCR扩增获得cry2Ab3完整ORF,经酶切、连接构建了重组表达质粒pET2Ab3。表达质粒导入大肠杆菌BL21(DE3),IPTG诱导后,SDSPAGE电泳证实了cry2Ab3的表达。生物测定显示诱导培养物对棉铃虫初孵幼虫和小菜蛾二龄幼虫具有杀虫活性,能明显抑制二化螟二龄幼虫生长,但对甜菜夜蛾和玉米螟没有明显活性。进一步提取Cry2Ab3蛋白,生测结果表明其对棉铃虫LC50为32.55μg/g。  相似文献   

8.
为了确定转Bt cry1Ah抗虫玉米HGK60的自交系及其杂交后代外源基因的遗传表达稳定性和农艺性状,通过实时荧光定量PCR和ELISA分析外源基因的遗传表达稳定性,通过室内外生测和田间性状考量分析农艺性状。荧光定量PCR结果表明Bt cry1Ah基因在玉米的不同组织中可以正常转录,但RNA表达水平存在一定的差异;ELISA结果表明在转基因植株的不同发育时期、不同器官中Cry1Ah的蛋白表达量顺序:雄穗叶片苞叶籽粒花丝穗轴。两地连续三代的田间及室内抗虫性检测结果表明HGK60抗虫玉米对亚洲玉米螟均表现出很好的抗性。性状考量结果表明HGK60抗虫玉米与受体材料对照比较,种子发芽率、生育期、穗行数、穗长、千粒重等农艺性状均无显著差异。通过多年多点田间试验和分子检测结果证明HGK60转基因抗虫玉米中外源基因稳定的遗传和表达,对亚洲玉米螟有很好的抗性,农艺性状与对照材料无显著差异。HGK60转基因抗虫玉米对亚洲玉米螟的良好抗性使其具有很好的产业化应用前景。  相似文献   

9.
玉米品种京科968具有众多综合优良特性,是北方春玉米区的主栽品种。为了解京科968穗期对亚洲玉米螟的抗性水平,并探明其抗螟机制,本试验选取京科968,其母本京724和父本京92,以及自330等4个玉米品种(系)作为供试玉米材料,其中自330作为感螟对照。通过实验种群生命表技术对取食4个玉米品种(系)花丝的亚洲玉米螟种群的生命表参数进行评价,并对花丝中营养物质、防御酶以及丁布类等化合物的含量进行分析。生命表结果显示,4个玉米品种(系)抗螟性大小依次为:京92京科968京724自330。与京724和感虫对照自330相比,取食京科968花丝的亚洲玉米螟发育历期延长,平均世代周期长,说明京科968的花丝具有一定抗螟效果;生化分析结果显示京科968花丝中的具有较高的可溶性糖、可溶性蛋白质、多酚氧化酶和超氧化物歧化酶含量,而DIMBOA和DIMBOA-Glc的含量均较低,说明玉米防御酶可能在花丝抗螟中发挥重要作用。  相似文献   

10.
以我室自行分离的对鳞翅目夜蛾科害虫具有高毒力的Bt菌株B-Pr-88为材料,用PCR-RFLP方法从其质粒DNA文库中筛选到含cry2Ab基因的一个阳性克隆pZF858,序列测定发现,该片段含有cry2Ab全长基因,开放读码框为1902bps,编码由633个氨基酸组成的70.7kD蛋白,氨基酸同源性与已公布的cry2Ab基因同源性均为99.8%,经Bt基因国际命名委员会正式命名为cry2Ab。根据cry2Ab基因开放阅读框架(ORF)两端序列,设计合成一对特异引物L2ab5和L2ab3,PCR扩增获得cry2Ab 完整ORF,与大肠杆菌表达载体pET-21b连接,构建了重组表达质粒pET-2Ab4,质粒导入大肠杆菌BL21(DE3),IPTG诱导后,SDS-PAGE电泳证实该基因表达了60kD的蛋白,生物测定表明,Cry2Ab4对棉铃虫和大豆食心虫具有高毒力,同时对小菜蛾和二化螟有一定的杀虫活性,而对亚洲玉米螟和甜菜夜蛾没有杀虫活性。  相似文献   

11.
Lepidopterans such as Helicoverpa armigera are emerging pests of corn in Korea, causing huge yield losses and deteriorating the quality of the corn crop. We monitored four major lepidopteran pests in major corn growing areas of Korea by employing sex pheromone traps from 2012 to 2015 to understand population dynamics. H. armigera, Ostrinia furnacalis, Spodoptera litura, Spodoptera exigua and Mythimna separata were collected from April to October. Among these species, H. armigera was found to be the main pest based on crop damage intensity (80–90% of the total damage). H. armigera was generally observed during the earing stage of corn and would migrate to other fields during September to October for overwintering. We also tested select insecticides against larvae of H. armigera in the laboratory. The most effective insecticide was indoxacarb, which was applied at specific times to manage H. armigera in cornfields. Optimal timing of spraying was estimated at about 70 days after planting (earing season) to control for H. armigera. Additionally, two species of parasitoid (Therion circumflexum and Ophioninae sp.) were identified from H. armigera. However, more extensive surveys are needed to organize a control program based on natural enemies.  相似文献   

12.
13.
Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae), a major larval endoparasitoid of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), also attacks many other noctuid caterpillars. We investigated the attractiveness of H. armigera‐ and Pseudaletia separata (Lepidoptera: Noctuidae)‐infested maize [Zea mays L. (Poaceae)] plants to C. chlorideae, and analyzed the volatiles emitted from infested plants and undamaged plants. Considering the reported specific induction of plant volatiles by elicitors in the caterpillar regurgitant, we also tested the response of the parasitoid to mechanically damaged plants treated with caterpillar regurgitant or water and measured the volatiles released by these plants. In wind‐tunnel bioassays, C. chlorideae was strongly attracted to herbivore‐induced maize volatiles. Mechanically damaged plants, whether they were treated with caterpillar regurgitant or water, were more attractive to the parasitoid than undamaged plants. The parasitoid did not distinguish between maize seedlings infested by the two noctuid insects, nor did they show a difference in attraction to mechanically damaged plants treated with caterpillar regurgitant or water. Coupled gas chromatography–mass spectrometer (GC‐MS) analysis revealed that 15 compounds were commonly emitted by herbivore‐infested and mechanically damaged maize plants, whereas only two compounds were released in minor amounts from undamaged plants. Infestation by H. armigera specifically induced four terpenoids, β‐pinene, β‐myrcene, D‐limonene, and (E)‐nerolidol, which were not induced by infestation of P. separata and mechanical damage, plus caterpillar regurgitant or water. Two compounds, geranyl acetate and β‐sesquiphellandrene, were also induced by the infestation of H. armigera, but not by the infestation of P. separata. All treated maize plants released volatiles in significantly larger total amounts than did undamaged plants. Maize plants infested by H. armigera emitted greater amounts of volatiles than plants infested by P. separata. The treatment with caterpillar regurgitant resulted in larger amounts of volatile emission than the treatment with water did in mechanically damaged plants. The amounts of emissions of individual compounds were also different between differently treated plants.  相似文献   

14.
Maize (Zea mays L. var. Bonnie) transformed with a gene encoding a 5-enolpyruvylshikimate 3-phosphate synthase with altered sensitivity showed over 100-fold greater resistance to the herbicide glyphosate (N-[phosphonomethyl]glycine) in comparison with its non-transformed progenitor (parental control) at the third-leaf stage. Studies with [14C]-glyphosate at a dosage lethal to the parental control, but sublethal to the transgenic, revealed that a maximum of 45-65% of the applied dose was absorbed, with greater absorption occurring in transgenic plants. Translocation of glyphosate was closely related to its absorption (r value 0.956) with approximately 15% more of the applied dose being mobilized in transgenic plants than the parental controls. Analysis of electronic autoradiograms along the treated leaf lamina found discrete internal regions of glyphosate accumulation closely associated with the site of application. These regions contained lower amounts of glyphosate present in the treated leaf lamina was almost completely translocated in transgenic plants, while in the parental controls more remained and the leaf became necrotic. In both types of maize there was a small accumulation of herbicide in the tip region of the leaf which was not mobilized. Younger shoot tissues and roots were major sinks for translocated glyphosate accumulating approximately 25-40% of the applied dose depending upon treatment. In the parental control, equal amounts of glyphosate were found distributed between young shoot tissues and roots; while in transgenic plants, the young shoot tissue accumulated around three times more glyphosate than the roots. In both plant types, glyphosate was localized in the meristems and young, actively growing leaves. Specific glyphosate activity (the amount of glyphosate per unit dry weight of tissue) in the major sinks of the transgenic declined towards the end of the treatment period but remained relatively constant in the parental control. In conclusion, enhancing glyphosate resistance by genetic transformation influenced the absorption, translocation and distribution of this herbicide in whole plants.Keywords: Zea mays, glyphosate (N-[phosphonomethyl]-glycine), transgenic, absorption, translocation, source-sink.   相似文献   

15.
16.
  1. Drought has become more common and severe in many parts of the world due to climate change. The effect of water stress on insect oviposition preference that is key determinant for their fitness has received less attention.
  2. Here, we examined how water stress may affect oviposition selection of Ostrinia furnacalis for maize plants in the greenhouse, and tested difference in volatile compounds emitted from treated maize, and electronantennogram and bioassay responses of O. furnacalis to the volatile profiles in maize plants.
  3. Ostrinia furnacalis were more prone to lay eggs on the well-watered maize. Most plant volatile compounds differed significantly among the three water treatments, including increased emissions of β-caryophyllene, (E)-2-hexenal, and linalool, and decreased emission of (Z)-3-hexen-1-ol when subjected to increasing intensity of drought.
  4. Varied volatile profiles of maize may drive oviposition decision of O. furnacalis, because O. furnacalis showed a clear oviposition preference for (Z)-3-hexen-1-ol, while not for β-caryophyllene, (E)-2-hexenal, and linalool, at the concentration of 1000 ppm.
  5. This study advances understanding of drought effects on plant–insect interactions through volatile profiles. Our finding calls for attention to oviposition selection for insect pest management in agricultural settings, especially in regions under changing precipitation patterns.
  相似文献   

17.
Escherichia coli cells and tobacco (cv. Xanthi) plants transformed with the hygromycin B phosphotransferase gene were able to grow in culture medium containing glyphosate at 2.0 mM. The growth of tobacco calli in media containing increasing glyphosate concentrations was measured. The ID50 for glyphosate was 1.70±0.03 mM for hygromycin-B resistant plants, and 0.45±0.02 mM for control plants. Regenerated plants and progeny selected for resistance to hygromycin B were tested for glyphosate tolerance by spraying them with Faena herbicide (formulated glyphosate with surfactant) at a dose equal to 0.24 kg/ha. This was two times the dose required to kill 100 percent of the control plants. Phosphotransferase activity was measured in the extracts of the transformed leaves by the incorporation of 32P from [–32P]ATP and it was observed that hygromycin B phosphotransferase was able to recognize the molecule of glyphosate as substrate.Abbreviations (Hyg) Hygromycin - (Km) Kanamycin - (Glp) Glyphosate - (Sarc) Sarcosine - (AMPA) Aminomethylphosphonic acid  相似文献   

18.
China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9–97.3%, avoid yield loss by 16.4–21.3% (range −11.9–99.2%) and lower mycotoxin contamination by 85.5–95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.  相似文献   

19.
Fertile transgenic tobacco plants with leaves expressing avidin in the vacuole have been produced and shown to halt growth and cause mortality in larvae of two noctuid lepidopterans, Helicoverpa armigera and Spodoptera litura. Late first instar H. armigera larvae and neonate (<12-h-old) S. litura larvae placed on leaves excised from T0 tobacco expressing avidin at 3.1–4.6M (moles/kg of fresh leaf tissue) had very poor growth over their first 8 days on the leaves, significant numbers had died by days 11 or 12 and all were dead by day 22 (H. armigera) or day 25 (S. litura). Similar results were obtained when late first instar H. armigera larvae were placed on leaves from T1 plants expressing avidin at six different average concentrations, ranging from 3.7 to 17.3M. Two larvae on the lowest expressing leaves survived to pupation, but there was total mortality among the other groups and no relationship between avidin concentration and the effects on the larvae. Synergistic effects between avidin-expressing tobacco plants and a purified Bt toxin, Cry1Ba, were demonstrated. Late instar H. armigera larvae fed with leaves from T2 plants expressing avidin at average concentrations of either <5.3 or >12.9M, and painted with Cry1Ba protein at a rate equivalent to an expression level of 0.5% of total leaf protein, died significantly faster than larvae given either of the two treatments alone. Larvae fed with avidin-expressing leaves painted with the protease inhibitor, aprotinin, at a rate equivalent to 1% of total leaf protein had mortality similar to those given avidin-leaves alone. There was no evidence of antagonism between these two proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号