首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为了提高永磁同步电机转速伺服控制性能,针对伺服系统模型参数不确定和外部扰动强的特点,利用基于趋近律设计方法的滑模控制理论,设计了一种永磁同步电机转速伺服积分滑模控制器。滑模面函数中的状态偏差积分项,确保了转速跟踪稳态无静差;通过引入非线性幂次组合函数构造的基于跟踪偏差的变速趋近律,使得切换增益具有随系统偏差自适应调整的特性,并可有效抑制滑模控制输出的抖振。经与转速伺服PI控制器对比实验表明,变速趋近律积分滑模控制器具有更好的动、静态特性和鲁棒性。  相似文献   

2.
为了改善永磁同步电机(PMSM)调速系统的动态品质,提出了一种基于变速趋近律方法的PMSM滑模速度控制策略。为了提高传统指数趋近律的收敛速度和消除系统抖阵现象的影响,在传统指数趋近律的基础上提出了一种新型变速趋近律方法,并应用该方法设计了一种PMSM调速系统的滑模速度控制器。通过仿真和试验结果对比分析,证明该算法不仅改善了系统的鲁棒性能,同时改善了系统的动态响应速度。  相似文献   

3.
为了提升永磁同步电机(PMSM)调速系统动态品质,提出了一种基于新型混合趋近律的积分滑模控制算法。在传统指数趋近律基础上,引入了双曲正切函数、终端吸引子和基于系统状态变量幂函数的自适应因子,并结合积分滑模面,提高了系统趋近速度自适应调节能力和干扰抑制能力,有效削弱了抖振水平。基于所提出的趋近律,设计了PMSM新型混合趋近律积分滑模速度控制器,通过仿真完成了与传统PI算法控制性能的对比分析。仿真结果表明,新型趋近律速度滑模控制器具有更好的速度跟踪精度,抗负载扰动性能更好,抖振量非常小,鲁棒性强。  相似文献   

4.
为了提升永磁同步电机(PMSM)调速系统的动态品质,提出了一种基于新型变指数趋近律的滑模速度控制算法。基于传统指数趋近律,引入了变指数函数和双曲正切函数,提高了系统趋近速度自适应调节能力和抖振抑制能力。基于新型变指数趋近律,设计了PMSM滑模速度控制器。通过与传统指数趋近律滑模控制算法、PI控制算法对比,仿真试验结果表明,新型滑模速度控制器具有较好的速度跟踪精度和抗扰动能力。  相似文献   

5.
为了提高永磁同步电机(PMSM)调速系统的动态性能,提出一种新型趋近律滑模控制策略。所提出的新型趋近律在幂次趋近律的基础上加入指数项,并且在幂次项指数中引入系统状态变量使幂次项指数与系统状态关联,解决幂次趋近律在远离滑模面时趋近速度慢的问题,同时使系统能平滑进入滑模面。然后,基于扩张状态观测器观测系统负载扰动,并将观测值前馈补偿至滑模控制器,降低负载扰动对系统的影响,提高系统的鲁棒性。仿真与实验结果表明,所提出的新型趋近律滑模控制策略能够有效地提高系统的动态性和鲁棒性。  相似文献   

6.
永磁同步电机调速系统的快速幂次趋近律控制   总被引:3,自引:0,他引:3  
针对在采用PI控制器的永磁同步电动机(permanent magnet synchronous motor,PMSM)调速系统中,PI控制器无法满足高精度控制要求,且易出现积分饱和的问题,提出一种基于快速幂次趋近律的滑模变结构控制器。该趋近律是在幂次趋近律的基础上,加入指数项以及系统状态变量。其中,指数项具有较快的收敛速度,可以解决幂次趋近律在远离滑模面时趋近速度慢的问题,系统状态变量可抑制由于引入指数项带来的抖振。基于该改进趋近律设计永磁同步电动机滑模速度调节器,并采用李雅普诺夫函数对其进行稳定性分析。经过与PI速度控制器进行仿真实验比较,结果表明采用该控制器的系统可实现速度无超调跟踪,并具有稳定性高、抗负载扰动强的优点。  相似文献   

7.
为了提高六相永磁同步电机调速系统的动态特性,提出一种新型滑模趋近律,在传统指数趋近律的基础上,引入系统状态变量设计双变指数趋近律,抑制滑模控制抖振,并提高滑模趋近速率。使用该趋近律方法设计一六相永磁同步电机滑模速度控制器,并与传统指数趋近律、PI控制器分别进行试验比较。研究表明,在电机起动、稳态和突加负载三种状态下,新型趋近律在转速响应和转矩响应都优于指数趋近律和PI控制,该速度控制器能有效提高系统的静、动态特性与鲁棒性。  相似文献   

8.
为了满足永磁同步电机调速系统的高性能控制和鲁棒性的要求,将滑模变结构控制中的趋近律与模糊控制相结合,研究了一类算法简单、易于实现的模糊趋近律滑模控制器。该控制器根据切换函数的大小,利用模糊规则实时调节趋近律参数,解决了系统趋近运动的快速性和抑制抖振的问题。通过永磁同步电机矢量控制系统的仿真实验表明,应用模糊趋近律滑模控制器作为转速调节器,使转速快速响应、快速稳定、无超调,有效地提高了系统的动态性能,对参数变化和外部负载扰动具有较强的鲁棒性,同时削弱了系统的抖振现象。  相似文献   

9.
传统的PI调节器由于控制方法简单,被广泛应用于PMSM调速系统,但它往往不能满足高性能控制要求.通过将滑模变结构控制(SMC)应用于PMSM调速系统,针对一般滑模控制中控制量的求取需整定多个参数范围带来的复杂性问题,结合趋近律法设计了一种变参数SMC方法,给出了控制器的设计方法,并对所设计的系统进行了仿真分析和实验研究.结果表明该控制器使系统具有快速性、稳定性、无超调以及抗负载扰动强等优点,提高了系统的鲁棒性.  相似文献   

10.
为进一步抑制永磁同步电机(PMSM)调速系统控制所产生的不稳定性问题,在传统指数趋近律基础上,设计了一种新型的趋近律。在传统指数趋近律的等速项中新加一个以滑模面s为变量的函数,同时对传统符号函数进行改进优化,进行曲线的平滑处理,以及进行改进趋近律的存在性、可达性证明。以改进后的趋近律构建滑模速度控制器,搭建系统的Simulink仿真模型,与PI控制方法、传统指数趋近律方法进行仿真效果对比。仿真结果显示,改进后的趋近律达到了减小抖振和提高抗扰性能的目的,各方面提升效果更加显著。  相似文献   

11.
永磁同步电机滑模变结构调速系统动态品质控制   总被引:5,自引:0,他引:5  
为了提高永磁同步电动机(permanent magnet synchronous motor,PMSM)调速系统的动态品质,提出了一种新型指数趋近律,与常规指数趋近律不同,该趋近律将趋近速度与系统状态量的变化相关联,克服了常规指数趋近律的缺点,有效抑制了滑模的固有抖振问题,并增大了趋近速度.将该趋近律应用于永磁同步电动机调速系统,设计了基于新型指数趋近律的滑模变结构速度控制器,以取代传统PI 调节器.仿真和实验结果表明,该速度控制器能够有效地提高系统的静态、动态特性与鲁棒性.  相似文献   

12.
为了提高三相永磁同步电机(PMSM)调速系统的动态品质,改善传统滑模速度控制器的控制性能,抑制系统抖振,提高控制精度,设计了基于新型趋近律与负载观测器的改进型滑模速度控制器。利用MATLAB/Simulink仿真软件,搭建控制系统模型并进行仿真分析。仿真验证了所设计的改进型PMSM速度控制器的有效性。该控制器可获得较好的速度跟踪精度和抗负载扰动能力,提高系统的稳定性和鲁棒性。  相似文献   

13.
为了改善使用PI控制算法和指数滑模控制(SMC)算法的永磁同步电机(PMSM)速度控制系统的鲁棒性差和突加负载转矩恢复较慢的问题,设计了一种改进趋近律SMC算法,并将该方法用在PMSM调速系统的速度控制器上。为了验证所提出的改进趋近律SMC算法的可行性,使用MATLAB/Simulink对PMSM双闭环调速系统仿真建模,并对比了传统的指数趋近律SMC算法、PI控制算法。结果表明设计的改进趋近律滑模速度控制器具有较好的鲁棒性和抗负载扰动性。  相似文献   

14.
为了提高永磁同步电机(PMSM)的控制精度与鲁棒性,并减小外界扰动对控制的影响,提出了一种新型趋近律的控制方法,解决了传统趋近律在收敛速度与滑模抖振之间存在冲突的问题。首先,在传统幂次趋近律的基础上提出设计了一种分段式的幂次趋近律,并在第二段幂次项后面添加一项线性项,可以更好地抑制抖振。然后,以负载转矩和转速为状态变量设计了一种滑模扰动观测器,并将观测结果反馈到速度控制环,进一步提高了控制系统鲁棒性。最后,通过仿真试验验证了该理论和方法的有效性与可行性。  相似文献   

15.
设计了一种永磁同步电机(PMSM)参数扰动和负载扰动的新型控制策略。通常PMSM控制是通过PI控制设计的,控制效果不佳,因此提出一种新型积分滑模控制(SMC)策略进行转速控制器设计。积分SMC具有较强的抗干扰性,不仅可以抑制控制系统的高频微分扰动,而且可以降低系统稳态误差,使控制更精确。设计趋近律函数对滑模控制器进行优化,使SMC参数自适应调节,提高系统响应速度。考虑到系统参数和负载扰动对控制性能的影响,将自抗扰环节引入SMC,提高了系统的抗扰性。最后通过仿真试验验证了控制系统良好的控制性能。  相似文献   

16.
为了改善基于PI控制的永磁同步电机(PMSM)调速系统转速超调大和抗扰动能力差的问题,研究一种自适应能力较强的新型指数趋近律。该趋近律在传统指数趋近律的基础上将等速项系数改进为时变量,能让系统更快地收敛到给定值,解决了传统指数趋近律系统收敛速度过慢的问题,并且采用可变边界层的饱和函数来替代传统开关函数从而削弱了滑模抖振现象。采用Lyapunov函数对新型指数趋近律的稳定性进行分析,并以此趋近律设计了速度环滑模控制器。采用MATLAB建模仿真,将其与PI控制结果比较,仿真结果表明基于新型指数趋近律的速度环滑模控制器能有效地提高PMSM调速系统的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号