首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a backplane transceiver, which uses pulse amplitude modulated four-level (PAM-4) signaling and continuously adaptive transmit-based equalization to move 2.5-GBd/s symbols totalling 5 Gb/s across typical FR-4 backplanes for total distances of up to 50 inches through two sets of backplane connectors. The 17-mm/sup 2/ device is implemented in a 0.25-/spl mu/m CMOS process, operates off of 2.5- and 3.3-V supply voltages, and consumes 1 W.  相似文献   

2.
A 300-MHz quadrature direct digital frequency synthesizer/complex mixer (QDDSM) chip is presented. With a 32-bit input frequency control word, the tuning resolution is 0.07 Hz at the operating frequency of 300 MHz. The 12-bit I and Q inputs and 13-bit I and Q outputs offer a spurious-free dynamic range of 90.3 dB. The tuning latency is 13 clock cycles, which corresponds to 43 ns at 300 MHz. The tuning bandwidth (half the operating frequency) is 150 MHz. The IC is realized in 0.25-/spl mu/m TSMC CMOS technology with 4180 standard library cells and occupies a core area of 0.36 mm/sup 2/. At 300 MHz, the power dissipation is less than 400 mW. A key feature of the design is the creation of conditionally negating multipliers.  相似文献   

3.
A dual-mode transceiver integrates the transmitter of 0-dBm output power and the receiver for both Bluetooth with -87 dBm sensitivity and 802.11b with -86 dBm sensitivity in a single chip. A direct-conversion architecture enables the maximum reuse and the optimal current consumption of the various building blocks in each mode for a low-cost and low-power solution. A single-ended power-amplifer (PA) driver transmits the nominal output power of 0 dBm with 18-dB gain control in 3-dB steps. Only little area overhead is required in the baseband active filter and programmable gain amplifier (PGA) to provide the dual-mode capability with optimized current consumption. The DC-offset cancellation scheme coupled with PGAs implements the very low high-pass cutoff frequency with a smaller area than required by a simple coupling capacitor. Fabricated in 0.25-/spl mu/m CMOS process, the die area is 8.4 mm/sup 2/ including pads, and current consumption in RX is 50 mA for Bluetooth and 65 mA for 802.11b from a 2.7-V supply.  相似文献   

4.
This paper describes a single-chip CMOS quad-band (850/900/1800/1900 MHz) RF transceiver for GSM/GPRS applications. It is the most important design issue to maximize resource sharing and reuse in designing the multiband transceivers. In particular, reducing the number of voltage-controlled oscillators (VCOs) required for local oscillator (LO) frequency generation is very important because the VCO and phase-locked loop (PLL) circuits occupy a relatively large area. We propose a quad-band GSM transceiver architecture that employs a direct conversion receiver and an offset PLL transmitter, which requires only one VCO/PLL to generate LO signals by using an efficient LO frequency plan. In the receive path, four separate LNAs are used for each band, and two down-conversion mixers are used, one for the low bands (850/900 MHz) and the other for the high bands (1800/1900 MHz). A receiver baseband circuit is shared for all four bands because all of their channel spaces are the same. In the transmit path, most of the building blocks of the offset PLL, including a TX VCO and IF filters, are integrated. The quad-band GSM transceiver that was implemented in 0.25-/spl mu/m CMOS technology has a size of 3.3/spl times/3.2 mm/sup 2/, including its pad area. From the experimental results, we found that the receiver provides a maximum noise figure of 2.9 dB and a minimum IIP3 of -13.2dBm for the EGSM 900 band. The transmitter shows an rms phase error of 1.4/spl deg/ and meets the GSM spectral mask specification. The prototype chip consumes 56 and 58 mA at 2.8 V in the RX and TX modes, respectively.  相似文献   

5.
Presented in this paper is a pipelined 285-MHz maximum a posteriori probability (MAP) decoder IC. The 8.7-mm/sup 2/ IC is implemented in a 1.8-V 0.18-/spl mu/m CMOS technology and consumes 330 mW at maximum frequency. The MAP decoder chip features a block-interleaved pipelined architecture, which enables the pipelining of the add-compare-select kernels. Measured results indicate that a turbo decoder based on the presented MAP decoder core can achieve: 1) a decoding throughput of 27.6 Mb/s with an energy-efficiency of 2.36 nJ/b/iter; 2) the highest clock frequency compared to existing 0.18-/spl mu/m designs with the smallest area; and 3) comparable throughput with an area reduction of 3-4.3/spl times/ with reference to a look-ahead based high-speed design (Radix-4 design), and a parallel architecture.  相似文献   

6.
This paper describes an optical transceiver designed for power-efficient connections within high-speed digital systems, specifically for board- and backplane-level interconnections. A 2-Gb/s, four-channel, dc-coupled differential optical transceiver was fabricated in a 0.5-/spl mu/m complementary metal-oxide-semiconductor (CMOS) silicon-on-sapphire (SoS) process and incorporates fast individual-channel power-down and power-on functions. A dynamic sleep transistor technique is used to turn off transceiver circuits and optical devices during power-down. Differential signaling (using two optical channels per signal) enables self-thresholding and allows the transceiver to quickly return from power-down to normal operation. A free-space optical link system was built to evaluate transceiver performance. Experimental results show power-down and power-on transition times to be within a few nanoseconds. Crosstalk measurements show that these transitions do not significantly impact signal integrity of adjacent active channels.  相似文献   

7.
This paper presents architecture, circuits, and test results for a single-ended, simultaneously bidirectional interface capable of a total throughput of 8 Gb/s per pin. The interface addresses noise reduction challenges by utilizing a pseudodifferential reference with noise immunity approaching that of a fully differential reference. The transmitter supports on-chip termination, predistortion, and low-skew near-end outgoing signal echo cancellation. The receiver's sense amplifier evaluates the average of two differential input signals without use of analog components and utilizes imbalanced charge injection to compensate for offset voltages. A test chip integrated in a 0.35-/spl mu/m digital CMOS technology uses the proposed techniques to implement an 8-bit wide single-ended voltage-mode simultaneous bidirectional interface and achieves a performance of 8 Gb/s per pin.  相似文献   

8.
A single-chip CMOS global system for mobile communications/digital cellular system dual-band offset phase-locked loop (OPLL) transmitter is presented in this paper. This chip includes a quadrature modulator and an OPLL modulation loop. Except for the loop filter and high-power voltage-controlled oscillator (TX VCO), everything is integrated into this chip to form a dual-band transmitter. This transmitter integrated circuit is fabricated in a 0.25-mum CMOS process. The current consumption without the TX VCO is approximately 23 mA under 2.7-V power supply for both bands. The measured rms and peak phase errors for Gaussian minimum shift-keying (GMSK) modulated signals are approximately 1deg and 2.4deg, respectively. The measurements show comparable performance to its BiCMOS counterparts  相似文献   

9.
A divide-by-16.5 frequency divider, providing read- and write-clocks for an elastic buffer or a gearbox between 10.3125-Gb/s and quad 3.125-Gb/s transceivers in 10-G Ethernet application, is presented. The high-speed and noninteger division is designed by cascading high-speed divide-by-3 followed by divide-by-5.5 which uses double-edge-triggered flip-flops. The divide-by-3 circuit receives and generates 5.15625-GHz and 1.71875-GHz differential clocks with a 50% duty cycle, respectively. Based on current-mode logics (CMLs), the proposed divide-by-16.5 scheme is implemented in a 0.13-/spl mu/m CMOS technology to achieve over 5-GHz operation while consuming 18 mW from a 1.2-V supply.  相似文献   

10.
A sixth-order 10.7-MHz bandpass switched-capacitor filter based on a double terminated ladder filter is presented. The filter uses a multipath operational transconductance amplifier (OTA) that presents both better accuracy and higher slew rate than previously reported Class-A OTA topologies. Design techniques based on charge cancellation and slower clocks are used to reduce the overall capacitance from 782 down to 219 unity capacitors. The filter's center frequency and bandwidth are 10.7 MHz and 400 kHz, respectively, and a passband ripple of 1 dB in the entire passband. The quality factor of the resonators used as filter terminations is around 32. The measured (filter + buffer) third-intermodulation (IM3) distortion is less than -40 dB for a two-tone input signal of +3-dBm power level each. The signal-to-noise ratio is roughly 58 dB while the IM3 is -45 dB; the power consumption for the standalone filter is 42 mW. The chip was fabricated in a 0.35-/spl mu/m CMOS process; filter's area is 0.84 mm/sup 2/.  相似文献   

11.
The theory of a linearization method using active post-distortion (APD) is explained for low-frequency and high-frequency applications. The low-frequency cancellation is explained in power series format and the high-frequency cancellation is explained in Volterra series format. The method is utilized for a cellular band (869-894 MHz) CDMA low-noise amplifier (LNA), which is implemented in 0.25-/spl mu/m CMOS process. The LNA achieves 1.2 dB NF, 16.2 dB power gain, and +8 dBm IIP3 while consuming 12 mA current from 2.6 V supply voltage. It shows 13.5 dB of IM3 product reduction with 0.15 dB NF penalty in comparison with an LNA which does not use the APD method.  相似文献   

12.
The design of a fifth-order 4-b quantizer single-loop /spl Sigma//spl Delta/ modulator is presented that achieves 25-MS/s conversion rate with 84 dB of dynamic range and 82 dB of signal-to-noise ratio. Implemented in a 0.18-/spl mu/m CMOS technology, the 0.95-mm/sup 2/ chip has a power consumption of 200 mW from a 1.8-V supply.  相似文献   

13.
Here, we present a low-power fully integrated 10-Gb/s transceiver in 0.13-/spl mu/m CMOS. This transceiver comprises full transmit and receive functions, including 1:16 multiplex and demultiplex functions, high-sensitivity limiting amplifier, on-chip 10-GHz clock synthesizer, clock-data recovery, 10-GHz data and clock drivers, and an SFI-4 compliant 16-bit LVDS interface. The transceiver exceeds all SONET/SDH (OC-192/STM-64) jitter requirements with significant margin: receiver high-frequency jitter tolerance exceeds 0.3 UI/sub pp/ and transmitter jitter generation is 30 mUI/sub pp/. All functionality and specifications (core and I/O) are achieved with power dissipation of less than 1 W.  相似文献   

14.
High-level integration of the Bluetooth and 802.11b WLAN radio systems in the 2.4-GHz ISM band is demonstrated in scaled CMOS. A dual-mode RF transceiver IC implements all transmit and receive functions including the low-noise amplifier (LNA), 0-dBm power amplifier, up/down mixers, synthesizers, channel filtering, and limiting/automatic gain control for both standards in a single chip without doubling the required silicon area to reduce the combined system cost. This is achieved by sharing the frequency up/down conversion circuits in the RF section and performing the required baseband channel filtering and gain functions with just one set of reconfigurable channel filter and amplifier for both modes. A chip implemented in 0.18-/spl mu/m CMOS occupies 4/spl times/4 mm/sup 2/ including pad and consumes 60 and 40 mA for RX and TX modes, respectively. The dual-mode receiver exhibits -80-dBm sensitivity at 0.1% BER in Bluetooth mode and at 12-dB SNR in WLAN mode.  相似文献   

15.
The design of a high-voltage output driver in a digital 0.25-/spl mu/m 2.5-V technology is presented. The use of stacked devices with a self-biased cascode topology allows the driver to operate at three times the nominal supply voltage. Oxide stress and hot carrier degradation is minimized since the driver operates within the voltage limits imposed by the design rules of a mainstream CMOS technology. The proposed high-voltage architecture uses a switching output stage. The realized prototype delivers an output swing of 6.46 V to a 50-/spl Omega/ load with a 7.5-V supply and an input square wave of 10 MHz. A PWM signal with a dual-tone sinusoid at 70 kHz and 250 kHz results in an IM3 of -65 dB and an IM2 of -67 dB. The on-resistance is 5.9 /spl Omega/.  相似文献   

16.
An ultra-wideband mixer using standard complementary metal oxide semiconductor (CMOS) technology was first proposed in this paper. This broadband mixer achieves measured conversion gain of 11 /spl plusmn/ 1.5 dB with a bandwidth of 0.3 to 25 GHz. The mixer was fabricated in a commercial 0.18-/spl mu/m CMOS technology and demonstrated the highest frequency and bandwidth of operation. It also presented better gain-bandwidth-product performance compared with that of GaAs-based HBT technologies. The chip area is 0.8 /spl times/ 1 mm/sup 2/.  相似文献   

17.
18.
A design is presented for an 8-bit/spl times/8-bit parallel pipelined multiplier for high speed digital signal-processing applications. The multiplier is pipelined at the bit level. The first version of this multiplier has been fabricated in 2.5-/spl mu/m CMOS technology. It has been tested at multiplication rates up to 70 MHz with a power dissipation of less than 250 mW. Clock skew, a major problem encountered in high-speed pipelined architectures, is overcome by the use of a balanced clock distribution network all on metal, and by proper use of clock buffers. These issues and the timing simulation of the pipeline design are discussed in detail. Possible extensions and improvements for achieving higher performance levels are discussed. The conversion of the two-phase clocking scheme to an inherently single-phase clock approach is one possible improvement. A design using this approach has been simulated at 75 MHz and is currently being fabricated.  相似文献   

19.
This paper describes the results of an implementation of a Bluetooth radio in a 0.18-/spl mu/m CMOS process. A low-IF image-reject conversion architecture is used for the receiver. The transmitter uses direct IQ-upconversion. The VCO runs at 4.8-5.0 GHz, thus facilitating the generation of 0/spl deg/ and 90/spl deg/ signals for both the receiver and transmitter. By using an inductor-less LNA and the extensive use of mismatch simulations, the smallest silicon area for a Bluetooth radio implementation so far can be reached: 5.5 mm/sup 2/. The transceiver consumes 30 mA in receive mode and 35 mA in transmit mode from a 2.5 to 3.0-V power supply. As the radio operates on the same die as baseband and SW, the crosstalk-on-silicon is an important issue. This crosstalk problem was taken into consideration from the start of the project. Sensitivity was measured at -82 dBm.  相似文献   

20.
The frequency-dependent attenuation of the transmission lines between chips and printed circuit boards, for example, is an obstacle to improving the performance of a system enhanced with LSI technology scaling. This is because large frequency-dependent attenuation results in poor eye-opening performance and a high bit-error rate in data transmission. This paper presents a 5-Gb/s 10-m 28AWG cable transceiver fabricated by using 0.13-/spl mu/m CMOS technology. In this transceiver, a continuous-time post-equalizer, with recently developed no-feedback-loop high-speed analog amplifiers, can handle up to 9dB of frequency-dependent attenuation in cables and also achieve an 18-dB improvement in the attenuation (27dB total improvement) by using pre- and post-equalization techniques in combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号