首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic plasticity is the key to synaptic health, and aberrant synaptic plasticity, which in turn impairs the functioning of large-scale brain networks, has been associated with neurodegenerative and psychiatric disorders. The best known and most studied form of activity-dependent synaptic plasticity remains long-term potentiation (LTP), which is controlled by glutamatergic N-methyl-d-aspartate) receptors (NMDAR) and considered to be a mechanism crucial for cellular learning and memory. Over the past two decades, discrepancies have arisen in the literature regarding the contribution of NMDAR subunit assemblies in the direction of NMDAR-dependent synaptic plasticity. Here, the nonspecific NMDAR antagonist ketamine (5 and 10 mg/kg), and the selective NR2B antagonists CP-101606 and Ro 25-6981 (6 and 10 mg/kg), were administered intraperitoneally in Sprague Dawley rats to disentangle the contribution of NR2B subunit in the LTP induced at the Schaffer Collateral-CA1 synapse using the theta burst stimulation protocol (TBS). Ketamine reduced, while CP-101606 and Ro 25-6981 did not alter the LTP response. The administration of CP-101606 before TBS did not influence the effects of ketamine when administered half an hour after tetanization, suggesting a limited contribution of the NR2B subunit in the action of ketamine. This work confirms the role of NMDAR in the LTP form of synaptic plasticity, whereas specific blockade of the NR2B subunit was not sufficient to modify hippocampal LTP. Pharmacokinetics at the doses used may have contributed to the lack of effects with specific antagonists. The findings refute the role of the NR2B subunit in the plasticity mechanism of ketamine in the model.  相似文献   

2.
The role that thyroid hormone deficiency plays in depression and synaptic plasticity in adults has only begun to be elucidated. This paper analyzes the possible link between depression and hypothyroidism in cognitive function alterations, using Wistar–Kyoto (WKY—an animal model of depression) rats and control Wistar rats under standard and thyroid hormone deficiency conditions (propylthiouracil administration—PTU). A weakening of memory processes in the WKY rats is shown behaviorally, and in the reduction of long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 hippocampal regions. PTU administration decreased LTP and increased basal excitatory transmission in the DG in Wistar rats. A decrease in short-term synaptic plasticity is shown by the paired-pulse ratio measurement, occurring during hypothyroidism in DG and CA1 in WKY rats. Differences between the strains may result from decreases in the p-CaMKII, p-AKT, and the level of acetylcholine, while in the case of the co-occurrence of depression and hypothyroidism, an increase in the p-ERK1-MAP seemed to be important. Obtained results show that thyroid hormones are less involved in the inhibition of glutamate release and/or excitability of the postsynaptic neurons in WKY rats, which may indicate a lower sensitivity of the hippocampus to the action of thyroid hormones in depression.  相似文献   

3.
d-serine is the major co-agonist of N-methyl-D-aspartate receptors (NMDAR) at CA3/CA1 hippocampal synapses, the activation of which drives long-term potentiation (LTP). The use of mice with targeted deletion of the serine racemase (SR) enzyme has been an important tool to uncover the physiological and pathological roles of D-serine. To date, some uncertainties remain regarding the direction of LTP changes in SR-knockout (SR-KO) mice, possibly reflecting differences in inhibitory GABAergic tone in the experimental paradigms used in the different studies. On the one hand, our extracellular recordings in hippocampal slices show that neither isolated NMDAR synaptic potentials nor LTP were altered in SR-KO mice. This was associated with a compensatory increase in hippocampal levels of glycine, another physiologic NMDAR co-agonist. SR-KO mice displayed no deficits in spatial learning, reference memory and cognitive flexibility. On the other hand, SR-KO mice showed a weaker LTP and a lower increase in NMDAR potentials compared to controls when GABAA receptors were pharmacologically blocked. Our results indicate that depletion of endogenous D-serine caused a reduced inhibitory activity in CA1 hippocampal networks, altering the excitatory/inhibitory balance, which contributes to preserve functional plasticity at synapses and to maintain related cognitive abilities.  相似文献   

4.
Status epilepticus (SE) causes persistent abnormalities in the functioning of neuronal networks, often resulting in worsening epileptic seizures. Many details of cellular and molecular mechanisms of seizure-induced changes are still unknown. The lithium–pilocarpine model of epilepsy in rats reproduces many features of human temporal lobe epilepsy. In this work, using the lithium–pilocarpine model in three-week-old rats, we examined the morphological and electrophysiological changes in the hippocampus within a week following pilocarpine-induced seizures. We found that almost a third of the neurons in the hippocampus and dentate gyrus died on the first day, but this was not accompanied by impaired synaptic plasticity at that time. A diminished long-term potentiation (LTP) was observed following three days, and the negative effect of SE on plasticity increased one week later, being accompanied by astrogliosis. The attenuation of LTP was caused by the weakening of N-methyl-D-aspartate receptor (NMDAR)-dependent signaling. NMDAR-current was more than two-fold weaker during high-frequency stimulation in the post-SE rats than in the control group. Application of glial transmitter D-serine, a coagonist of NMDARs, allows the enhancement of the NMDAR-dependent current and the restoration of LTP. These results suggest that the disorder of neuron–astrocyte interactions plays a critical role in the impairment of synaptic plasticity.  相似文献   

5.
Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose–response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.  相似文献   

6.
Neuropathic pain arises from damage or dysfunction of the peripheral or central nervous system and manifests itself in a wide variety of sensory symptoms and cognitive disorders. Many studies demonstrate the role of neuropathic pain-induced neuroinflammation in behavioral disorders. For effective neuropathic pain treatment, an integrative approach is required, which simultaneously affects several links of pathogenesis. One promising candidate for this role is synaptamide (N-docosahexaenoylethanolamine), which is an endogenous metabolite of docosahexaenoic acid. In this study, we investigated the activity of synaptamide on mice behavior and hippocampal plasticity in neuropathic pain induced by spared nerve injury (SNI). We found a beneficial effect of synaptamide on the thermal allodynia and mechanical hyperalgesia dynamics. Synaptamide prevented working and long-term memory impairment. These results are probably based on the supportive effect of synaptamide on SNI-impaired hippocampal plasticity. Nerve ligation caused microglia activation predominantly in the contralateral hippocampus, while synaptamide inhibited this effect. The treatment reversed dendritic tree degeneration, dendritic spines density reduction on CA1-pyramidal neurons, neurogenesis deterioration, and hippocampal long-term potentiation (LTP) impairment. In addition, synaptamide inhibits changes in the glutamatergic receptor expression. Thus, synaptamide has a beneficial effect on hippocampal functioning, including synaptic plasticity and hippocampus-dependent cognitive processes in neuropathic pain.  相似文献   

7.
Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory. This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter 1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However, PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.  相似文献   

8.
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.  相似文献   

9.
Alzheimer’s disease (AD)-associated neurodegeneration is triggered by different fragments of amyloid beta (Aβ). Among them, Aβ (25–35) fragment plays a critical role in the development of neurodegeneration—it reduces synaptic integrity by disruption of excitatory/inhibitory ratio across networks and alters the growth factors synthesis. Thus, in this study, we aimed to identify the involvement of neurotrophic factors—the insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF)—of AD-like neurodegeneration induced by Aβ (25–35). Taking into account our previous findings on the neuroprotective effects of the mix of proteoglycans of embryonic genesis (PEG), it was suggested to test its regulatory effect on IGF-1 and NGF levels. To evaluate the progress of neurodegeneration, in vivo electrophysiological investigation of synaptic activity disruption of the entorhinal cortex–hippocampus circuit at AD was performed and the potential recovery effects of PEG with relative structural changes were provided. To reveal the direct effects of PEG on brain functional activity, the electrophysiological pattern of the single cells from nucleus supraopticus, sensomotor cortex and hippocampus after acute injection of PEG was examined. Our results demonstrated that after i.c.v. injection of Aβ (25–35), the level of NGF decreased in cerebral cortex and hypothalamus, and, in contrast, increased in hippocampus, prompting its multidirectional role in case of brain damage. The concentration of IGF-1 significantly increased in all investigated brain structures. The administration of PEG balanced the growth factor levels accompanied by substantial restoration of neural tissue architecture and synaptic activity. Acute injection of PEG activated the hypothalamic nucleus supraopticus and hippocampal neurons. IGF-1 and NGF levels were found to be elevated in animals receiving PEG in an absence of amyloid exposure. We suggest that IGF-1 and NGF play a critical role in the development of AD. At the same time, it becomes clear that the neuroprotective effects of PEG are likely mediated via the regulation of neurotrophins.  相似文献   

10.
The pesticide rotenone inhibits mitochondrial complex I and is thought to cause neurological disorders such as Parkinson’s disease and cognitive disorders. However, little is known about the effects of rotenone on conditioned taste aversion memory. In the present study, we investigated whether intranasal administration of rotenone affects conditioned taste aversion memory in mice. We also examined how the intranasal administration of rotenone modulates synaptic transmission and plasticity in layer V pyramidal neurons of the mouse insular cortex that is critical for conditioned taste aversion memory. We found that the intranasal administration of rotenone impaired conditioned taste aversion memory to bitter taste. Regarding its cellular mechanisms, long-term depression (LTD) but not long-term potentiation (LTP) was impaired in rotenone-treated mice. Furthermore, spontaneous inhibitory synaptic currents and tonic GABA currents were decreased in layer V pyramidal neurons of rotenone-treated mice compared to the control mice. The impaired LTD observed in pyramidal neurons of rotenone-treated mice was restored by a GABAA receptor agonist muscimol. These results suggest that intranasal administration of rotenone decreases GABAergic synaptic transmission in layer V pyramidal neurons of the mouse insular cortex, the result of which leads to impairment of LTD and conditioned taste aversion memory.  相似文献   

11.
Dephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP). Established protein phosphatase 2B (PP2B, calcineurin) inhibitor cyclosporin A prevented the LTP early phase (E-LTP) decline produced by pretreatment of hippocampal slices with cycloheximide or anisomycin. For the first time, we directly measured serine/threonine phosphatase activity during E-LTP, and its significant increase in PSB-treated slices was demonstrated. Nitric oxide (NO) donor SNAP also heightened phosphatase activity in the same manner as PSB, and simultaneous application of anisomycin + SNAP had no synergistic effect. Direct measurement of the NO production in hippocampal slices by the NO-specific fluorescent probe DAF-FM revealed that PSBs strongly stimulate the NO concentration in all studied brain areas: CA1, CA3, and dentate gyrus (DG). Cyclosporin A fully abolished the PSB-induced NO production in the hippocampus, suggesting a close relationship between nNOS and PP2B activity. Surprisingly, cyclosporin A alone impaired short-term plasticity in CA1 by decreasing paired-pulse facilitation, which suggests bi-directionality of the influences of PP2B in the hippocampus. In conclusion, we proposed a minimal model of signaling events that occur during LTP induction in normal conditions and the PSB-treated slices.  相似文献   

12.
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.  相似文献   

13.
Autoimmune encephalitis associated with antibodies (Abs) against α1, β3, and γ2 subunits of γ-aminobutyric acid receptor A (GABAAR) represents a severe form of encephalitis with refractory seizures and status epilepticus. Reduction in inhibitory GABAergic synaptic activity is linked to dysfunction of neuronal networks, hyperexcitability, and seizures. The aim in this study was to investigate the direct pathogenic effect of a recombinant GABAAR autoantibody (rAb-IP2), derived from the cerebrospinal fluid (CSF) of a patient with autoimmune GABAAR encephalitis, on hippocampal CA1 and CA3 networks. Acute brain slices from C57BL/6 mice were incubated with rAb-IP2. The spontaneous synaptic GABAergic transmission was measured using electrophysiological recordings in voltage-clamp mode. The GABAAR autoantibody rAb-IP2 reduced inhibitory postsynaptic signaling in the hippocampal CA1 pyramidal neurons with regard to the number of spontaneous inhibitory postsynaptic currents (sIPSCs) but did not affect their amplitude. In the hippocampal CA3 network, decreased number and amplitude of sIPSCs were detected, leading to decreased GABAergic synaptic transmission. Immunohistochemical staining confirmed the rAb-IP2 bound to hippocampal tissue. These findings suggest that GABAAR autoantibodies exert direct functional effects on both hippocampal CA1 and CA3 pyramidal neurons and play a crucial role in seizure generation in GABAAR autoimmune encephalitis.  相似文献   

14.
Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc−/−) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc−/− and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.  相似文献   

15.
The high plasticity of cancer stem-like cells (CSCs) allows them to differentiate and proliferate, specifically when xenotransplanted subcutaneously into immunocompromised mice. CSCs are highly tumorigenic, even when inoculated in small numbers. Thus, in vivo limiting dilution assays (LDA) in mice are the current gold standard method to evaluate CSC enrichment and activity. The chick embryo chorioallantoic membrane (CAM) is a low cost, naturally immune-incompetent and reproducible model widely used to evaluate the spontaneous growth of human tumor cells. Here, we established a CAM-LDA assay able to rapidly reproduce tumor specificities—in particular, the ability of the small population of CSCs to form tumors. We used a panel of organotropic metastatic breast cancer cells, which show an enrichment in a stem cell gene signature, enhanced CD44+/CD24−/low cell surface expression and increased mammosphere-forming efficiency (MFE). The size of CAM-xenografted tumors correlate with the number of inoculated cancer cells, following mice xenograft growth pattern. CAM and mice tumors are histologically comparable, displaying both breast CSC markers CD44 and CD49f. Therefore, we propose a new tool for studying CSC prevalence and function—the chick CAM-LDA—a model with easy handling, accessibility, rapid growth and the absence of ethical and regulatory constraints.  相似文献   

16.
The deletion of matrix metalloproteinase MMP9 is combined here with chronic monocular deprivation (cMD) to identify the contributions of this proteinase to plasticity in the visual system. Calcium imaging of supragranular neurons of the binocular region of primary visual cortex (V1b) of wild-type mice revealed that cMD initiated at eye opening significantly decreased the strength of deprived-eye visual responses to all stimulus contrasts and spatial frequencies. cMD did not change the selectivity of V1b neurons for the spatial frequency, but orientation selectivity was higher in low spatial frequency-tuned neurons, and orientation and direction selectivity were lower in high spatial frequency-tuned neurons. Constitutive deletion of MMP9 did not impact the stimulus selectivity of V1b neurons, including ocular preference and tuning for spatial frequency, orientation, and direction. However, MMP9−/− mice were completely insensitive to plasticity engaged by cMD, such that the strength of the visual responses evoked by deprived-eye stimulation was maintained across all stimulus contrasts, orientations, directions, and spatial frequencies. Other forms of experience-dependent plasticity, including stimulus selective response potentiation, were normal in MMP9−/− mice. Thus, MMP9 activity is dispensable for many forms of activity-dependent plasticity in the mouse visual system, but is obligatory for the plasticity engaged by cMD.  相似文献   

17.
18.
Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23–P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. Conclusions: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.  相似文献   

19.
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology—in which neuroanatomic, biochemical and genetic factors concur—has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.  相似文献   

20.
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs—nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)—might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号