首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redox regulatory mechanisms in cellular stress responses   总被引:7,自引:0,他引:7  
BACKGROUND: Reactive oxygen species are produced in a highly localized and specific pattern in biological stress responses. The present review examines the redox regulatory aspects of a number of molecular stress response mechanisms in both prokaryotes and eukaryotes. SCOPE: The present review provides examples representing both the cytoplasmic stress response, often studied as the heat shock response, as well as the stress response of the endoplasmic reticulum, known as the unfolded protein response. The examples have been selected to illustrate the variety of ways that redox signals mediate and affect stress responses. CONCLUSIONS: Redox regulatory mechanisms are intricately embedded in both the cytoplasmic and endoplasmic reticulum stress responses at multiple levels. Many different stimuli, both internal and external, activate endogenous production of reactive oxygen species as a necessary part of the intracellular communication system that activates stress responses.  相似文献   

2.
The plant cell apoplast is the compartment beyond the cell plasmalemma, including the cell wall and intercellular space. Many environmental elements can trigger reactive oxygen species (ROS) burst at the plasma membrane which then alters the redox state of the apoplast. Recently, h-type thioredoxin (Trx), OsTRXh1, was identified to be involved in apoplastic redox state regulation in rice. OsTRXh1 is conserved redox-active Trx and can be secreted into the extracellular regions. Through transgenic rice plant, we found that OsTRXh1 regulated ROS accumulation in apoplast and influenced plant development and stress responses. This provides new insights into apoplastic redox state regulation pathway and expands our understanding of h-type Trxs function.  相似文献   

3.
β-lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitocondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.  相似文献   

4.
β-lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitocondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.  相似文献   

5.
The antioxidant role of carotenoids in the living organism was proposed as a possible basis for the honesty of carotenoid‐based signals. However, recent studies have questioned the relevance of carotenoids as powerful antioxidants in vivo. Current evidence does not seem to support the “antioxidant role” hypothesis, but it does not allow us to reject it either. This paper proposes some steps to solve this controversy, such as taking a dynamic approach to antioxidant responses, designing protocols that expose individuals to oxidative challenges, analyzing tissues other than blood, and obtaining measures of antioxidant capacity and oxidative damage simultaneously. However, it should be considered that, irrespective of their antioxidant potential, carotenoids might still give information on oxidative stress levels if they are particularly sensitive to free radicals. Finally, lumping together the immunostimulatory and antioxidant roles of carotenoids should be avoided as these functions are not necessarily associated.  相似文献   

6.
一氧化氮(nitric oxide,NO)作为重要的信号分子,调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程,并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道,精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基,通过金属亚硝基化、巯基亚硝基化和Tyr.硝基化等化学修饰方式,调节靶蛋白的活性,并影响cGMP和Ca2+信使系统等下游信号途径,调控相应的生理过程。最新的一些研究结果也显示,MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外,作为活跃的小分子信号,NO和活性氧相互依赖并相互影响,共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展,对NO与活性氧信号途径间的交叉作用等也作了简要介绍。  相似文献   

7.
西藏半干旱区3种柏树对干旱胁迫的生理响应特征   总被引:2,自引:1,他引:1  
以巨柏、大果圆柏和香柏3年生盆栽苗为材料,采用自然干燥法控水,在4个土壤含水量梯度(T1、T2、T3、T4)下测定了3种柏树光合-光响应曲线、光合作用参数和保护酶的活性,以探讨它们对干旱胁迫的生理响应特征。结果显示:(1)3种柏树光合-光响应曲线随干旱胁迫加剧的变化趋势基本相同,当光量子通量密度(PFD)<200μmol.m-2.s-1,净光合速率随PFD的增强基本呈直线增长;当PFD达到1 200μmol.m-2.s-1左右时,净光合速率达到最大。(2)随着干旱胁迫的加剧,3种柏树的光饱和点下降而光补偿点升高,表观量子效率降低;水分利用效率在巨柏和大果圆柏中呈持续下降趋势,而香柏为先上升后下降,但水分利用效率平均值以香柏最大。(3)随着干旱胁迫的加剧,3种柏树SOD活性先升高后降低;巨柏和大果圆柏POD活性呈持续上升趋势,而香柏为先升高后降低;巨柏和大果圆柏的CAT活性先升高后降低,而香柏呈持续上升趋势;3种柏树的MDA含量均呈现逐渐升高趋势,但香柏的脂质过氧化程度远低于巨柏和大果圆柏。研究表明,香柏比巨柏和大果圆柏具有更强的抗旱适应性。  相似文献   

8.
9.
10.
11.
Plants establish highly and systemically organized stress defense mechanisms against unfavorable living conditions. To interpret these environmental stimuli, plants possess communication tools, referred as secondary messengers, such as Ca2+ signature and reactive oxygen species (ROS) wave. Maintenance of ROS is an important event for whole lifespan of plants, however, in special cases, toxic ROS molecules are largely accumulated under excess stresses and diverse enzymes played as ROS scavengers. Arabidopsis and rice contain 3 NADPH-dependent thioredoxin reductases (NTRs) which transfer reducing power to Thioredoxin/Peroxiredoxin (Trx/Prx) system for scavenging ROS. However, due to functional redundancy between cytosolic and mitochondrial NTRs (NTRA and NTRB, respectively), their functional involvements under stress conditions have not been well characterized. Recently, we reported that cytosolic NTRA confers the stress tolerance against oxidative and drought stresses via regulation of ROS amounts using NTRA-overexpressing plants. With these findings, mitochondrial NTRB needs to be further elucidated.  相似文献   

12.
内质网应激偶联炎症反应与慢性病发病机制   总被引:1,自引:0,他引:1  
Yan J  Hu ZW 《生理科学进展》2010,41(4):261-266
内质网是合成细胞内分泌蛋白和膜蛋白并进行蛋白折叠的主要细胞器。新近研究证明,当内质网蛋白质合成与折叠的负担增加、非折叠或错误折叠蛋白质堆积,可激活内质网的几组特定信号转导通路,将这些应激信号传递到细胞浆和细胞核,引起未/错误折叠蛋白反应。这对维持细胞动态平衡和生物体的发育具有重要意义。更为重要的是,未/错误折叠蛋白反应能够与细胞内炎症反应信号转导通路偶联,是非感染性致病原引发炎症反应的主要原因。因此,内质网应激-未/错误折叠蛋白反应-炎症反应在特定的细胞发生偶联是许多炎症疾病的发病机制。本文综述该领域的研究进展,并介绍了内质网应激信号和炎症反应偶联参与一些慢性病发病的分子细胞机制。这些研究不仅加深人们对这些慢性病发病机制的了解,也有助于对调节内质网应激-炎症反应的药物的研发。  相似文献   

13.
采用不同的活性氧发生源, 研究了· 、H2O2和OH·胁迫下Bacillus sp. F26以抗氧化物酶合成为特征的应激响应。结果表明, 细胞对氧胁迫的应激响应程度取决于活性氧种类、胁迫程度和形式(瞬时和持续)。Bacillus sp. F26对H2O2胁迫的响应程度最高, 过氧化氢酶的快速合成对细胞抵抗H2O2胁迫至关重要, 当细胞及时分解进入胞内的H2O2, 胁迫对细胞的氧化损伤程度并不高, 相反会刺激细胞的生长和底物消耗, 当胁迫超过过氧化氢酶的分解能力时, H2O2会迅速抑制细胞生长和过氧化氢酶合成; 由于 ·与细胞作用的方式和效果与H2O2不同, 超氧化物歧化酶和过氧化氢酶的快速合成并不能保证细胞及时有效地清除胞内的活性氧, 因此, 细胞对 ·胁迫的响应程度要低于H2O2胁迫; 在所考察的3种活性氧中, OH·胁迫(Fenton反应体系)对细胞的氧化损伤程度最大, 胁迫强烈地抑制了细胞生长和抗氧化物酶的合成。由此表明, 由于不同活性氧的化学性质有所不同, 细胞对不同种类、程度和形式的活性氧胁迫会表现出不同的生物学效应, 为了提高自身对氧胁迫的抵抗能力, 微生物会通过自身的代谢调节适应新的环境, 包括调整抗氧化物酶合成水平、改变生长速度以及底物消耗速率等。  相似文献   

14.
汪仁  徐晟  蒋明敏  何树兰  彭峰  夏冰 《西北植物学报》2014,34(10):2041-2048
以2种春出叶石蒜属植物中国石蒜和换锦花为材料,通过盆栽控水试验,以适宜水分(最大持水量的75%~80%)为对照,设置干旱胁迫(最大持水量的35%~40%)处理,研究干旱胁迫对其幼苗生理生化指标的影响,以明确2种植物的耐旱特性。结果显示:(1)换锦花和中国石蒜幼苗叶片相对含水量(RWC)和叶绿素a、b含量均随着干旱胁迫时间的延长而降低。(2)换锦花可溶性糖含量和脯氨酸含量均随着干旱时间的延长表现出持续增加的趋势,而中国石蒜则表现出先升高后降低的趋势。(3)换锦花和中国石蒜幼苗叶片TBARS含量和相对电导率总体上呈增大趋势,并在干旱末期达到最大值;超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均呈现出先上升后下降趋势。(4)换锦花和中国石蒜幼苗叶片净光合速率(Pn)、胞内二氧化碳浓度(Ci)和蒸腾速率(Tr)随着干旱胁迫时间延长均有不同程度下降。研究表明,在土壤干旱胁迫条件下,换锦花和中国石蒜幼苗叶片在水分生理、光合特性、渗透调节物质和抗氧化酶活性等方面表现出一定的差异,其中换锦花较中国石蒜表现出较强的耐旱性,且具有明显的优势。  相似文献   

15.
In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark‐Root (D‐Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D‐Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D‐Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.  相似文献   

16.
采用不同的活性氧发生源, 研究了· 、H2O2和OH·胁迫下Bacillus sp. F26以抗氧化物酶合成为特征的应激响应。结果表明, 细胞对氧胁迫的应激响应程度取决于活性氧种类、胁迫程度和形式(瞬时和持续)。Bacillus sp. F26对H2O2胁迫的响应程度最高, 过氧化氢酶的快速合成对细胞抵抗H2O2胁迫至关重要, 当细胞及时分解进入胞内的H2O2, 胁迫对细胞的氧化损伤程度并不高, 相反会刺激细胞的生长和底物消耗, 当胁迫超过过氧化氢酶的分解能力时, H2O2会迅速抑制细胞生长和过氧化氢酶合成; 由于 ·与细胞作用的方式和效果与H2O2不同, 超氧化物歧化酶和过氧化氢酶的快速合成并不能保证细胞及时有效地清除胞内的活性氧, 因此, 细胞对 ·胁迫的响应程度要低于H2O2胁迫; 在所考察的3种活性氧中, OH·胁迫(Fenton反应体系)对细胞的氧化损伤程度最大, 胁迫强烈地抑制了细胞生长和抗氧化物酶的合成。由此表明, 由于不同活性氧的化学性质有所不同, 细胞对不同种类、程度和形式的活性氧胁迫会表现出不同的生物学效应, 为了提高自身对氧胁迫的抵抗能力, 微生物会通过自身的代谢调节适应新的环境, 包括调整抗氧化物酶合成水平、改变生长速度以及底物消耗速率等。  相似文献   

17.
Enterococci may survive in adverse environments including the human body where bacteriocins, antibiotics, iron-limitation and immune response represent stressing conditions for bacteria that cause division block. In those conditions, bacteria present in the human body would hardly be in an exponentially growing phase but would mostly be in physiological states such as starvation or the viable but nonculturable (VBNC) state. The possibility that the starved and VBNC bacteria can maintain their ability to adhere to living and inanimate substrates is the first mandatory step for them potentially to cause an infection process. In this study it is shown that starved and stationary enterococcal cells are able to form biofilms on plastic material albeit with reduced efficiency as compared to growing cells. Moreover, although VBNC enterococcal forms are not capable of forming biofilms, Enterococcus faecalis and other enterococcal species of medical interest maintain their ability to synthesize the polymeric matrix for a limited period of time under adverse environmental conditions. The data presented, together with those regarding the maintenance of the division recovery potential already proved in nonculturable bacteria, further support the possibility for the VBNC and other nondividing bacterial forms to have a role as infectious agents and to constitute a risk to human health.  相似文献   

18.
19.
An endoplasmic reticulum (ER)-located transmembrane protein, Ire1, triggers cytoprotective events upon ER stress. Chimeric yeast Ire1 carrying the luminal domain of the mammalian major Ire1 paralogue IRE1α is upregulated in ER-stressed yeast cells, but is poorly associated with the ER-located chaperone BiP even under non-stressed conditions. This observation contradicts the theory that BiP is the master regulator of IRE1α.  相似文献   

20.
Photosynthetic efficiency and redox homeostasis are important for plant physiological processes during regular development as well as defence responses. The second‐stage juveniles of Heterodera schachtii induce syncytial feeding sites in host roots. To ascertain whether the development of syncytia alters photosynthesis and the metabolism of reactive oxygen species (ROS), chlorophyll a fluorescence measurements and antioxidant responses were studied in Arabidopsis thaliana shoots on the day of inoculation and at 3, 7 and 15 days post‐inoculation (dpi). Nematode parasitism caused an accumulation of superoxide and hydrogen peroxide molecules in the shoots of infected plants at 3 dpi, probably as a result of the observed down‐regulation of antioxidant enzymes. These changes were accompanied by an increase in RNA and lipid oxidation markers. The activities of antioxidant enzymes were found to be enhanced on infection at 7 and 15 dpi, and the content of anthocyanins was elevated from 3 dpi. The fluorescence parameter Rfd, defining plant vitality and the photosynthetic capacity of leaves, decreased by 11% only at 7 dpi, and non‐photochemical quenching (NPQ), indicating the effectiveness of photoprotection mechanisms, was about 16% lower at 3 and 7 dpi. As a result of infection, the ultrastructure of chloroplasts was changed (large starch grains and plastoglobules), and more numerous and larger peroxisomes were observed in the mesophyll cells of leaves. We postulate that the joint action of antioxidant enzymes/molecules and photochemical mechanisms leading to the maintenance of photosynthetic efficiency promotes the fine‐tuning of the infected plants to oxidative stress induced by parasitic cyst nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号