首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract  About 2.5 million t of sedimentary phosphorite mine tailings, highly enriched with Cd, Cr, Cu, Ni, Fe, F, and Zn, are dumped annually in the coastal waters of Togo without any pre-treatment, causing serious pollution problems in the region. We conducted bioaccumulation investigations on fish and crustaceans sampled from the polluted coastal zone. The highest concentrations of metals in fish and crustacean were found close to the tailings outfall and the values decreased further away from the source of pollution. Compared to the international reference norms for seafood given by the WHO, Cd is enriched 10 to 168 fold, Pb 20 to 107 fold, Cu up to 5 fold, Fe up to 15 fold, and F up to 3 fold.  相似文献   

2.
Abstract  Lakes develop when pits from open cut mines are left to fill with groundwater. In recent years, mining companies, mining communities, and regulatory agencies have begun to consider potential beneficial end uses for mine lakes. Beneficial end uses are unlikely to be without environmental impacts, however, and a proper consideration of the total benefit to the community should consider them. This paper briefly reviews potential beneficial end uses and possible environmental impacts that might arise with them for mine lakes in the Collie Basin, a coal mining region in Western Australia. We identified eight distinct, but not necessarily incompatible, end uses from a search of the literature on mine lakes throughout the world: recreation and tourism, wildlife conservation, aquaculture, irrigation, livestock water, potable water, industrial water, and chemical extraction. Recreation, conservation, and possibly aquaculture use the mine lake directly, whereas the other end uses utilise extracted water. All end uses have the potential to have environmental effects, with the most common being an actual or perceived impact on human health and safety. A semi-quantitative risk assessment, using published literature sources, identified wildlife conservation as the end use with the least environmental risk, and irrigation as the end use with the greatest environmental risk. Such risks need to be balanced against economic and social benefits. There is an urgent need for a regulatory framework to address mine lake options.  相似文献   

3.
Abstract.  Due to operational and regulatory practicalities, pit lakes will continue to be common legacies of mine lease relinquishments. Unplanned or inappropriate management of these geographical features can lead to both short- and long-term liability to mining companies, local communities, and the nearby environment during mining operations or after lease relinquishment. However, the potential for pit lakes to provide benefit to companies, communities, and the environment is frequently unrecognised and yet may be a vital contribution to the sustainability of the open-cut mining industry. Sustainable pit lake management aims to minimise short and long term pit lake liabilities and maximise short and long term pit lake opportunities. Improved remediation technologies are offering more avenues for pit lakes resource exploitation than ever before, at the same time mining companies, local communities, and regulatory authorities are becoming more aware of the benefit these resources can offer.  相似文献   

4.
Abstract  About 2.5 million t of sedimentary phosphorite mine tailings, highly enriched with trace metals such as Cd, Cr, Cu, Ni, and Zn, are dumped annually in the coastal waters of Togo without any pre-treatment, causing serious pollution problems in the region. We conducted laboratory jar tests of a coagulation-flocculation procedure with coagulants RM45U and AN945MPM to clarify the sludge. The efficiency of the method depends particularly on two factors: the amount of coagulant and the solid concentration of the sludge to be treated. Thus, with a mud concentration of 47.7 g/L, the average optimal amount of the two coagulants was 25 mg/L. With both coagulants, water turbidity passed from 60 x 103 NTU to approximately 3 NTU after clarification with the optimal amount of the two coagulants. RM45U reduced concentrations of Pb by 40%, Zn by 98.8%, Fe by 80.6%, and Cd by 32.8%. AN945MPM reduced Pb by 20%, Zn by 98.5%, Fe by 48%, and Cd by 32.8%.  相似文献   

5.
Abstract  Closure of Pb-Zn mines in the Iglesias district (SW Sardinia, Italy) caused the cessation of pumping in 1997, and the consequent flooding of underground workings. Deep saline water mixed with the shallow groundwater as the water table rose, increasing salinity. Stratification caused the saline water at depth to settle over a period of three years. At the beginning of rebound, an increase in dissolved Zn, Cd, Pb, and Hg was observed under near-neutral pH conditions. Following peak concentrations, a marked decrease of Zn, Cd, and Hg, and to a lesser extend Pb, occurred. After 7 years of rebound, the concentrations of these metals are relatively low at most mine sites, although the levels are generally still higher than in unmined areas. Nowadays, the highest release of metals to the aquatic system occurs from the weathering of tailings and mine wastes.  相似文献   

6.
Abstract.  Leachate water quality from covered and uncovered unoxidised sulphide-rich tailings in six pilot-scale (5x5x3 m3) test cells was monitored during 2004 and 2005. The covers consisted of a layer of clayey till, sewage sludge, apatite or Trisoplast (a commercial mixture of tailings, bentonite, and a polymer). All layers were protected by an unspecified till except in one reference cell, where the tailings were left open. All leachate waters showed near-neutral pH as a result of neutralization by calcite in the tailings and by Ca(OH)2 added prior to deposition. Average dissolved sulphur concentrations in the leachates were ≈ 600 mg L-1, except in the cell with sewage sludge (300 mg L-1). The source of sulphur was mainly pyrite oxidation, but residual sulphur probably remained from the enrichment process. The near-neutral pH favoured precipitation of metal-(oxy)hydroxides with subsequent removal of trace elements such as Cd, Cu and Pb (< 15 μg L-1) from the solutions. High concentrations of Co, Mn, Ni, and Zn were found in leachates from the apatite, Trisoplast, and uncovered tailings cells. High As concentrations were found in the leachates in the sewage sludge and clayey till cells. The lowest metal concentrations, redox potential, and highest pH were found in the sewage sludge cell. Decreased elemental metal concentrations during 2004 suggest improved performance over time.  相似文献   

7.
Abstract  Closure of Pb-Zn mines in the Iglesiente district (SW Sardinia, Italy) caused the cessation of pumping in 1997 at Monteponi, and in 1998 at San Giovanni. Consequent flooding of underground workings occurred in the district and also involved Campo Pisano. In June 1998, as the water table rose from 160 to 20 m below sea level, the deep saline water mixed with the shallow ground water at Monteponi and nearby mines. In the same period, an increase in dissolved metals (especially Zn, Cd, and Pb) was observed under near-neutral pH conditions. Following peak concentrations, a marked decrease of Zn, Cd, and Hg occurred. Dissolved Pb showed fluctuating concentrations over the monitoring period (1996-2005). In January 2000, when the water table rose to 20 m above sea level, the salinity of ground water decreased significantly at all of the mines. Stratification caused the more saline water at depth to settle three years after rebound started. Depth profiles carried out in 2005 at Monteponi, San Giovanni, and Campo Pisano showed an increase in conductivity and dissolved metals in ground water at deeper levels, especially at depths below sea level.After eight years of rebound, a marine component was still present at depth in ground water at San Giovanni (about 2%), and to a lesser extent at Monteponi (about 0.4%).  相似文献   

8.
Abstract.  Hydrogeological study of the Manikgarh and Naokari limestone mining areas, located in the Chandrapur region of central India, indicate that the mining operations should not cause environmental problems. Conversion of hill mining to pit mining at the Manikgarh Limestone Mine should be feasible and safe. At the Naokari Limestone Mine, a partial diversion of a seasonal stream, the Bop Nala, has been proposed to simplify mining and maximize production; this can be done without significantly altering the natural drainage pattern of the area and is not expected to have any adverse effects on the hydrological regime of area.  相似文献   

9.
Abstract.   The discharge of highly mineralised mine waters with enhanced 226Ra and 228Ra activity concentrations has affected creeks, rivers, sediments, soils, and plants along the Lippe River and its tributaries. 226Ra activity concentrations were elevated in all water samples receiving mine water, with activity concentrations gradually decreasing with increased distance from the colliery due to dilution and chemical precipitation of radium with barium. Increased concentrations of radium and radium decay products were also measured in sediments and flood-affected soils. The sediments show an enrichment of 226Ra up to a factor of 750, while the contaminated soils only reach a factor of 10. In aquatic plants, a 4-fold increase in 226Ra activity concentrations was measured downstream of the discharge points. The contamination of the river banks and adjacent floodplain with radium is responsible for enhanced gamma dose rates, which, along with the incorporation of soil by playing children, provide potential radiation exposure to the public.  相似文献   

10.
The Potential Importance of Mine Sites for Biodiversity   总被引:1,自引:0,他引:1  
Abstract  Abandoned mine sites are typically viewed as environmental problems due to their negative impacts on local ecosystems. This paper presents an alternative viewpoint providing evidence of the potential importance of mine sites for supporting rare and threatened species from many of the major taxonomic orders. The potential importance of these species in remediation of polluted environments is also highlighted.  相似文献   

11.
Abstract.  Microbial heavy metal retention was studied using seepage water sampled from a former uranium mining site in Eastern Thuringia, Germany. The seepage water has a low pH and contains high concentrations of metals, including uranium, rare earth elements (REE), and other heavy metals. Microbial influence on sorption and/or active uptake of heavy metals was studied using REE patterns. Incubation of seepage water with the bacterium Escherichia coli caused sorption of heavy metals to biomass. Incubation with the fungus Schizophyllum commune, however, had a much more pronounced effect, including significant fractionation of REE, pointing to the possibility of a specific active uptake mechanism. Extraction factors and fractionation coefficients are given to show the capacity of the presented bioextraction for future applications.  相似文献   

12.
Abstract.  Microbial alkalinity production was evaluated as a method to prevent reacidification of neutralized mining lakes by acidic ground and seepage water. We used 60 L mesocosms to represent the sediment and water column of a shallow acidic mine lake. To enhance alkalinity production, acidic and neutralized lake waters were treated with either phosphorus (controlled eutrophication) or organic matter (controlled saprobization). Controlled eutrophication could not produce enough autochthonous biomass as substrate for microbial alkalinity production to change the acidity of the water. Chemical pre-neutralization of the acidic water caused the inorganic carbon concentration to increase, but at the same time, hindered algae growth by reducing the availability of phosphate by sorption to the freshly precipitated iron hydroxide. This effect was so strong that even high phosphorus additions could not increase the algae biomass production. In contrast to controlled eutrophication, controlled saprobization produced significant alkalinity. Despite inhibition of the most important alkalinity producing process, namely microbial sulfate reduction, by low pH values, the microbial alkalinity production rate was not affected by pre-neutralization of the water column. Other alkalinity producing processes raised the pH in the reactive zone until sulfate reduction was no longer inhibited.  相似文献   

13.
Abstract.   Drainage systems in large surface mines are designed to accomplish three basic objectives: keeping working conditions dry, stable and safe; lowering hydrostatic pressure and increasing the effective stress of soil to improve slope stability; and ensuring pit floor workability. This can be achieved with drainage facilities that include channels, water collection sumps, and pump stations. We report the development of a computer-aided system called Dewatering of Open Pit Mines (DEWOP), which can assist open pit mine designers to solve water-related problems. The system was developed in a Visual Basic object programming language, taking advantage of multi-user, open database connectivity, such as Microsoft Access, for storage and processing of information. In tests at coal and copper surface mines, it reduced drainage facilities costs by 8%.  相似文献   

14.
Abstract  The copper mine at Kilembe in the Ruwenzori Mountains in western Uganda ceased to operate in 1978 but a steady flow of contaminants, including Cu, Co, Ni, Zn, Cd, and sulphate, continues to enter the Nyamwamba-Rukoki River, which passes through Queen Elizabeth National Park, and finally flows into Lake George. Lake George is quite shallow, alkaline, and highly eutrophic. Measuring mass-flow of contaminants, water, and suspended solids in the Rukoki River near Kasese allowed us to estimate their input into Lake George. Grid sampling of lake sediments indicated that the contaminants settle near the two mouths of the river; low concentrations in a drill core in the centre of Lake George indicate that further dispersion within the lake is small. Sequential extraction experiments on lake sediments and lake water analyses suggest low bioavailability of the heavy metals. We conclude that Lake George is a highly resilient system that efficiently immobilises contaminants. Though there is no health risk for the population under present environmental conditions, a reduction of the contaminant load is desirable.  相似文献   

15.
Abstract:  The net acidity of a water sample can be measured directly by titration with a standardized base solution or calculated from the measured concentrations of the acidic and basic components. For coal mine drainage, the acidic components are primarily accounted for by free protons and dissolved Fe2+, Fe3+, Al3+, and Mn2+. The base component is primarily accounted for by bicarbonate. A standard way to calculate the acidity for coal mine drainage is: Acidcalc = 50*(2*Fe2+/56 + 3*Fe3+/56 + 3*Al/27 + 2*Mn/55 + 1000*10-pH)—alkalinity, where acidity and alkalinity are measured as mg/L CaCO3 and the metals are mg/L. Because such methods of estimating acidity are derived by independent laboratory procedures, their comparison can provide a valuable QA/QC for AMD datasets. The relationship between measured and calculated acidities was evaluated for 14 datasets of samples collected from mine drainage discharges, polluted receiving streams, or passive treatment systems, containing a total of 1,484 sample analyses. The datasets were variable in nature, ranging from watersheds where most of the discharges contained alkalinity to ones where all of the discharges were acidic. Good relationships were found to exist between measured and calculated acidities. The average acidity measurement was 239 mg/L CaCO3 and the average acidity calculation was 226 mg/L CaCO3. Linear regressions were calculated for individual datasets and for the entire dataset. The linear regression for the entire dataset was: Acidcalc = 0.98 * Acidmeas – 8, r2 = 0.98. The good correlation between calculated and measured acidity is the basis for an easy and inexpensive QA/QC for AMD data. Substantial variation between measured and calculated acidities can be used to infer sampling or analytical problems.  相似文献   

16.
Abstract.   This paper describes pilot scale tests of a novel process for the neutralisation of acidic mine water. Leachate from a waste coal dump was neutralised with limestone, and iron, aluminium, and sulphate were removed. Specific aspects studied were: the process configuration; the rates of iron oxidation, limestone neutralisation, and gypsum crystallisation; the chemical composition of the effluents before and after treatment; the efficiency of limestone utilisation; and the sludge solids content. The acidity was decreased from 12,000 to 300 mg/L (as CaCO3), sulphate from 15,000 to 2,600 mg/L, iron from 5,000 to 10 mg/L, aluminium from 100 to 5 mg/L, while the pH increased from 2.2 to 7.0. Reaction times of 2.0 and 4.5 h were required under continuous and batch operations respectively for the removal of 4 g/L Fe (II). The iron oxidation rate was found to be a function of the Fe (II), hydroxide, oxygen, and suspended solids (SS) concentrations. The optimum SS concentration for iron oxidation in a fluidised-bed reactor was 190 g/L. Up-flow velocity had no influence on the rate of iron oxidation in the range 5 to 45 m/h. Sludge with a high solids content of 55% (m/v) was produced. This is high compared to the typical 20% achieved with the high density sludge process using lime. It was determined that neutralisation costs could be reduced significantly with an integrated iron oxidation and limestone neutralisation process because limestone is less expensive than lime, and a high-solids-content sludge is produced. Full scale implementation followed this study.  相似文献   

17.
Abstract.   The Vale de Abrutiga uranium deposit, located in Central Portugal near the Aguieira dam reservoir, was surface mined. Low-grade ore and waste rock were deposited on permeable ground, close to the mine, and were not revegetated. A lake has formed in the open pit. Surface waters draining the mine site are acidic, have high conductivity, and high concentrations of U, SO42-, Zn, Fe, Mn, Ra, Cu, Th, and Pb. The groundwater and the water from the reservoir cannot be used for human consumption or irrigation. The sampled waters show higher contaminant concentrations in winter than in summer. Stream sediments have high geoaccumulation indices for U, Fe, Ag, Zn, Cr, Co, and Pb. In general, sediments bordering the dam reservoir have higher metal contents in winter than in summer.  相似文献   

18.
Abstract.  An analog pit lake (APL) test has been developed to predict pit lake water quality following closure of an equatorial copper-gold mine. The juvenile (0-9 years after closure) pit lake (JPL) water budget will comprise 10% rainfall; 26% surface runoff; 40% wallrock runoff, and 24% deep groundwater inflow. The mature (>65 years after closure) pit lake (MPL) will consist of 39% rainfall; 29% surface runoff; 15% wallrock runoff; 3% deep groundwater inflow, and 1% shallow groundwater inflow, with the balance (13%) contributed by the JPL. Wallrock runoff due to incident precipitation was replicated in humidity columns, subaqueous wallrock leachate by leaching columns of each rock type with groundwater, rainwater by addition of sea salt to deionized water, and surface runoff by a sample from a local creek. The solutions were combined in aquaria and the appropriate fraction evaporated, 7% for the JPL and 36% for the MPL. Electron microprobe analysis of precipitates identified clays and Al, Cu, and Zn adsorbed to ferrihydrite surfaces. A preliminary pit design resulted in an acidic (pH 3.3) JPL containing 7 mg/L Cu. However, by modifying the design to exclude a potentially acidgenerating andesite unit, the JPL water quality improves (e. g., pH 6.7; Cu 0.002 mg/L). The MPL pH with the andesite would be 6.1 (Cu = 2.2 mg/L), while the final design results in a pH of 7.1 and 0.22 mg/L Cu. The APL test can also be used to corroborate numerical models predictions and assess the efficacy of mitigation alternatives.  相似文献   

19.
Abstract.  Nighttime high-resolution airborne thermal infrared imagery (TIR) data were collected in the predawn hours during Feb 5-8 and March 11-12, 1999, from a helicopter platform for 72.4 km of the Youghiogheny River, from Connellsville to McKeesport, in southwestern Pennsylvania. The TIR data were used to identify sources of mine drainage from abandoned mines that discharge directly into the Youghiogheny River. Image-processing and geographic information systems (GIS) techniques were used to identify 70 sites within the study area as possible mine drainage sources. The combination of GIS datasets and the airborne TIR data provided a fast and accurate method to target the possible sources. After field reconnaissance, it was determined that 24 of the 70 sites were mine drainage. This paper summarizes: the procedures used to process the TIR data and extract potential mine-drainage sites; methods used for verification of the TIR data; a discussion of factors affecting the TIR data; and a brief summary of water quality.  相似文献   

20.
Abstract.  Surface water bodies are expected to form in several pits at the Getchell Open Pit Mine after mining has ceased due to inflowing surface and ground water. Predicting the long-term geochemical behavior of the pit water is important in assessing potential environmental effects. One of the pits, the Summer Camp Pit, began to develop a pit lake in 1991 when dewatering ceased and the pit was used to store water pumped from underground operations. This provided a field-scale opportunity to identify the controls on lake water chemistry and determine the effects of seasonal mixing events on long-term chemical behavior. During a five-year period (1996-2001), a number of physical, chemical and mineralogical characteristics of the lake were monitored with the intent of using this information as a basis for predicting long-term geochemical behavior of future lakes in the other pits. Seasonal and multiyear cycles were identified within the water column. These cycles were influenced by climatic changes and element and sediment loadings of inflow to the lake. Stratification occurred, with the metalimnion or active layer of the lake evolving from a low total dissolved solids (TDS), alkaline water to a high TDS, neutral to mildly acidic water, until turnover occurred due to density variations between the metalimnion and epilimnion, completely mixing the layers. A hypolimnion that formed has the potential to stabilize metals in the basal sediments as sulfide minerals below a chemolimnion in the lake. Longer-term events also appear to involve the hypolimnion.The monitoring program demonstrated the dynamic nature of a pit lake and how the complex limnology can affect seasonal water quality. Such considerations are important in interpreting water quality from pit lakes and in selecting monitoring data to use when constructing mathematical models for predicting changes in water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号