首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂离子蓄电池正极材料LiFePO_4研究进展   总被引:1,自引:0,他引:1  
锂离子电池正极材料正在向着高比能量、长寿命、低成本、环境友好的方向发展,LiFePO4正极材料以其结构稳定、成本低、无污染等优点成为21世纪研究重点。综述了LiFePO4的研究进展。系统地阐述了其晶体结构特征及性能,以及合成方法、掺杂导电材料和控制晶体生长制备纳米粉体等对材料性能的影响。提出了下一步可能的研究方向。  相似文献   

2.
不同碳源包覆LiFePO_4正极材料的合成及电化学性能   总被引:1,自引:0,他引:1  
采用单一碳源和复合碳源,以固相反应法合成了碳包覆型LiFePO4正极材料。借助ECT、XRD、SEM和循环伏安仪对LiFePO4正极材料进行了表征,研究了不同包覆碳源对所制LiFePO4正极材料电化学性能的影响。结果表明,与使用其他碳源相比,在使用六次甲基四胺与蔗糖作为复合碳源时,LiFePO4正极材料的包覆碳量降低了40%左右;首次可逆放电容量提高了20%左右,达到141mAh/g;循环20次后的容量保持率提高了2%左右。由该种LiFePO4正极材料制作的锂离子电池具有较好的自我修复能力。  相似文献   

3.
综述了近年来新型锂离子电池正极材料LiFePO4的研究进展。从掺杂网状结构碳、碳纳米管、碳纳米纤维以及球形、棒状和空心LiFePO4的制备几个方面,对不同形貌与结构的LiFePO4的研究现状进行了介绍与讨论。碳掺杂可有效提高LiFePO4的导电性,并抑制粒径的增大;减小材料颗粒的粒径,可以从根本上提高颗粒的比表面积,有效减小电荷的移动距离,提高参与电化学反应材料的比例;而材料的特殊形貌有助于形成导电网络,对其导电性能的提高有着十分重要的影响。综上所述,通过减小颗粒的粒径、提高比表面积、掺杂导电剂以及制备更易形成导电网络形貌的材料,是获得优良性能LiFePO4的有效方法。  相似文献   

4.
液相还原法结合高温烧结制备正极材料LiFePO4/C   总被引:1,自引:1,他引:0  
以LiOH·H2O为锂源,草酸(H2C2O4·2H2O)为还原剂,采用液相还原法制得LiFePO4的前驱体,再结合短时间高温烧结,制备了锂离子电池正极材料LiFePO4/C.研究了不同碳源、FePO4·xH2O(x=0,2,4)以及不同烧结时间对所制备LiFePO4/C正极材料电化学性能的影响.结果表明,最佳制备条件是...  相似文献   

5.
锂离子电池正极材料纳米LiFePO_4   总被引:1,自引:0,他引:1  
综述了LiFePO4的晶体结构、充放电机理、电化学性能、存在问题以及纳米技术近年来在LiFePO4中应用的最新进展。纳米LiFePO4的制备方法主要有高温固相反应法、水热合成法、溶胶凝胶法、微波合成法等。材料的粒径大小及分布、离子和电子的传导能力对产品的电化学性能影响较大,在制备时采用惰性气氛、掺杂改性以及控制晶粒的生长尺寸是关键,电极材料的微纳米化对锂离子电池的电化学性能和循环性能的改善有着显著的意义,展望了纳米正极材料LiFePO4用于锂离子电池的未来前景。  相似文献   

6.
蔗糖热解碳对LiFePO_4材料结构和性能的影响   总被引:1,自引:0,他引:1  
应用微波法制备了锂离子电池正极材料LiFePO4,通过预加在前驱体中的蔗糖受热分解产生的碳来改善材料的结构和性能。XRD和SEM分析发现,这种方式引进的碳对材料的晶体结构影响不大,但可抑制由于加热时间增加而引起的晶体长大。添加蔗糖材料的高倍率循环性能比纯LiFePO4大大提高。电化学阻抗谱显示,添加蔗糖的材料所装电池的阻抗可达123?,远小于纯LiFePO4材料的1110?。  相似文献   

7.
以Li2CO3和FePO4·2H2O为原料,葡萄糖为碳源,同时添加偶联剂作分散剂及杂质源来合成LiFePO4正极材料,研究了偶联剂的种类及添加量对所制LiFeO4材料性能及分散效果的影响.结果表明:添加TC-Wt钛酸酯偶联剂且质量分数为3.0%时,所制LiFeO4具有更好的电化学性能,其0.1 C,0.5 C,1.0 ...  相似文献   

8.
锂离子电池正极材料LiFePO_4的制备与改性进展   总被引:2,自引:1,他引:1  
综述了锂离子电池正极材料LiFePO4的七种制备方法及其研究进展,评述了各种方法的优缺点。讨论了LiFePO4改性研究的最新成果,包括物理掺杂和体相掺杂,分析了各种改性方法提高LiFePO4电导率和电化学性能的可能机理,其中体相掺杂改性机理还存在一些争议。并对LiFePO4的研究方向进行了展望。  相似文献   

9.
采用湿法球磨制备了锂离子电池用混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4。通过X射线衍射(XRD)和扫描电镜(SEM)表征了材料的结构和形貌,采用恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)方法研究了混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的电化学性能。结果表明:混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的晶体结构完好,碳包覆的纳米LiFePO4颗粒较好地包覆在LiNi0.5Co0.2Mn0.3O2表面。含质量分数15% LiFePO4的混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4电化学性能优良,0.2C首次充放电比容量为181.40 mAh?g–1,首次充放电效率为90.79%;1.0C循环50次后放电比容量为169.89 mAh?g–1,容量保持率为97.80%;3.0C循环5次后的放电比容量为162.22 mAh?g–1,容量保持率仍有89.43%;60 ℃高温存储7 d后,容量保持率和容量恢复率分别为86.48%和97.32%。  相似文献   

10.
采用传统的陶瓷工艺制备贫铁MnZn铁氧体材料Mn0.61Zn0.41Ti0.02Fe1.96O4,并采用流延工艺制备出厚度为100~150μm的贫铁MnZn铁氧体薄片。研究了贫铁MnZn铁氧体材料的微观形貌和晶相结构,测试了贫铁MnZn铁氧体材料的磁性能。研究表明,贫铁Mn Zn铁氧体在低频区域的磁性能与富铁MnZn铁氧体相当,并在13.56 MHz的高频区域仍保持了较高的磁导率。通过运用仿真软件CST模拟NFC(近场通信)天线的场强分布并根据可读写距离测试了铁氧体薄片的屏蔽能力,讨论了贫铁MnZn铁氧体材料同时运用于无线充电及近场通信的可行性。  相似文献   

11.
分析了对铁电场效应晶体管漏极电流特性有影响的铁电材料参数,设计了具有单层和双层栅介质结构的铁电场效应晶体管,并进行了仿真研究。仿真结果表明:具有高Pr/低Pr栅介质结构的铁电场效应晶体管在饱和极化后,其极化前后输出漏极电流差最大,有利于存储信号的分辨,提高电路的效率。通过改变该结构中低Pr层的Pr,Ec等铁电材料参数,发现在3~4V间饱和极化,该结构的铁电场效应晶体管的漏极电流输出特性比较稳定,减小了对材料、工艺、Ps/Pr及Ec的依赖性和敏感性,具有易于制造和便于电路设计的优点。  相似文献   

12.
层状结构的LiMnO2正极材料具有能量密度高、安全性能好、价格低廉和无毒性等优点,是下一代锂离子电池正极材料中强有力的竞争者。介绍了近年来国内外LiMnO2正极材料的的研究现状与进展,并对其结构特性、制备方法、体相掺杂和表面包覆进行了评述,提出了目前LiMnO2正极材料研究中尚存在的一些问题,并对其未来的发展前景进行了展望。  相似文献   

13.
层状结构的LiMnO2正极材料具有能量密度高、安全性能好、价格低廉和无毒性等优点,是下一代锂离子电池正极材料中强有力的竞争者。介绍了近年来国内外LiMnO2正极材料的的研究现状与进展,并对其结构特性、制备方法、体相掺杂和表面包覆进行了评述,提出了目前LiMnO2正极材料研究中尚存在的一些问题,并对其未来的发展前景进行了展望。  相似文献   

14.
采用固-液相球磨法,在原料中加入γ-氨丙基三乙氧基硅烷(KH—550)为分散剂和掺杂剂,制备了LiFePO4/C正极材料。用XRD,SEM及电化学综合测试仪研究了所制材料的结构、表观形貌及电化学性能。结果表明:制备的LiFePO4为标准的橄榄石型结构,添加KH—550后,颗粒无团聚现象,材料的倍率性能和循环性能明显改善:在0.1 C时,首次放电比容量达到157.9 mAh/g,,比未添加KH—550样品高出6.5 mAh/g,,5 C倍率放电时,容量保持在110.3 mAh/g。经过100次循环后,容量保持率为97.3%,比未添加KH—550样品高出6.4%。  相似文献   

15.
采用螯合辅助球磨法制备了LiFePO4/C复合材料,研究了不同的螯合剂(乙二胺四乙酸(EDTA),草酸,柠檬酸)对前驱体以及LiFePO4/C复合材料性能的影响。结果表明:LiFePO4/C复合材料的性能与螯合剂密切相关。螯合剂的螯合能力越强,球磨过程中前驱体颗粒越小,均匀程度越好,由此可提高LiFePO4/C复合材料的电化学性能。相比草酸和柠檬酸,采用乙二胺四乙酸作为螯合剂所制备的样品拥有更好的电化学性能,其在150 mA/g和1 500mA/g的电流密度下的可逆充放电比容量分别为155.5 mAh/g和102 mAh/g。  相似文献   

16.
唐华  龙勇  李金  武欢  何晔  李璐 《压电与声光》2021,43(3):406-412
该文总结了铌镁酸铅系弛豫铁电单晶材料的发展历程,铌镁酸铅系单晶材料的压电常数由最初的1 540 pC/N提升至4 000 pC/N,制备单晶的主要方法为改进的布里奇曼法。根据单晶的组分不同,工艺条件也有差别,在改进其性能的过程中其理论依据逐渐完善,弛豫铁电单晶高压电效应的根源是单畴剪切压电效应,在实际研究中可通过宏观或微观地改变局部结构对铁电相进行设计,使铁电自由能分布曲线变得平坦,从而达到提高其压电性能的目的。铌镁酸铅基弛豫铁电单晶性能优异,可替代锆钛酸铅(PZT)陶瓷而广泛用于医用超声探头、水下声纳及压电驱动器等领域。  相似文献   

17.
采用水热法结合短时间高温烧结,通过将前驱体pH值从3.00调节到9.00,制备出多种形貌的纯相LiFePO4。对所得产物进行了X射线粉末衍射(XRD)测试、扫描电子显微镜(SEM)表征以及电化学性能测试,研究了前驱体pH值对LiFePO4的形貌和电化学性能的影响及其机理。结果表明,产物均为橄榄石型LiFePO4,并显示出由棒状物组成的空心球形、凹陷形以及菱形和多层菱形等多种形貌。不同形貌LiFePO4的电化学性能差异较大,当前驱体pH=6.00时电化学性能最佳,在0.1C和5C下首次放电比容量分别为163mAh.g-1和100mAh.g-1。  相似文献   

18.
磷酸铁锂电池(简称:铁锂电池、铁电池,本文称"铁电池"),是一种正极材料为磷酸亚铁锂(LiFePO4)的新型蓄电池,具有循环寿命长、耐高温、体积小、重量轻、无污染等优点。本文将结合现有应用案例,拟对通信用磷酸铁锂电池的节能减排应用方向及前景进行探讨分析,以起到抛砖引玉的作用,吸引更多的行业专家对此类新型蓄电池予以关注和研究。  相似文献   

19.
Bi4Ti3O12栅Si基铁电场效应晶体管特性研究   总被引:4,自引:1,他引:3  
采用溶胶 -凝胶工艺制备了 Si基 Ag/Bi4 Ti3O1 2 栅铁电场效应晶体管。研究了 Bi4 Ti3O1 2 铁电薄膜厚度、栅宽 /长比等器件结构参数对性能的影响。研究表明 :铁电场效应晶体管的阈值电压、击穿场强和剩余极化等并不随 Bi4 Ti3O1 2 薄膜厚度的增加而线性变化 ,跨导和漏 -源电流在不同的栅宽 /长比范围变化趋势不同 ,当Bi4 Ti3O1 2 厚度为 2 0 0~ 40 0 nm、Wg/Lg 取 1~ 2时 ,器件可获得较好的综合性能 ,不同栅压变化过程的 Isd-Vsd特性曲线并不重合 ,表明该器件具有源于铁电薄膜极化的场效应特性。  相似文献   

20.
为提高铁电阴极材料的电子发射电流密度及电子束品质,采用等静压成型工艺制备PZT铁电阴极样品,研究了真空度、温度、极间距、收集极和极间铜网等测试条件对其电子发射性能的影响。结果表明:利用等静压成型工艺制备样品,并进行硅橡胶绝缘层保护,在真空度高于10–3Pa,极间距为2.5mm,并在极间添加铜网,采用石墨收集极情况下进行电子发射实验,可获得铁电阴极样品测试最佳效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号