首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Identifying the nodes with largest spreading influence of complex networks is one of the most promising domains. By taking into account the neighbors' k-core values, we present an improved neighbors' k-core (INK) method which is the sum of the neighbors' k-core values with a tunable parameter α to evaluate the node spreading influence with largest k-core values. Comparing with the Susceptible–Infected–Recovered (SIR) results for four real networks, the INK method could identify the node spreading influence with largest k-core values more accurately than the ones generated by the degree k, closeness C, betweenness B and coreness centrality method.  相似文献   

2.
Ranking the spreading influence in complex networks   总被引:1,自引:0,他引:1  
Identifying the node spreading influence in networks is an important task to optimally use the network structure and ensure the more efficient spreading in information. In this paper, by taking into account the shortest distance between a target node and the node set with the highest kk-core value, we present an improved method to generate the ranking list to evaluate the node spreading influence. Comparing with the epidemic process results for four real networks and the Barabási–Albert network, the parameterless method could identify the node spreading influence more accurately than the ones generated by the degree kk, closeness centrality, kk-shell and mixed degree decomposition methods. This work would be helpful for deeply understanding the node importance of a network.  相似文献   

3.
In the study of disease spreading on empirical complex networks in SIR model, initially infected nodes can be ranked according to some measure of their epidemic impact. The highest ranked nodes, also referred to as “superspreaders”, are associated to dominant epidemic risks and therefore deserve special attention. In simulations on studied empirical complex networks, it is shown that the ranking depends on the dynamical regime of the disease spreading. A possible mechanism leading to this dependence is illustrated in an analytically tractable example. In systems where the allocation of resources to counter disease spreading to individual nodes is based on their ranking, the dynamical regime of disease spreading is frequently not known before the outbreak of the disease. Therefore, we introduce a quantity called epidemic centrality as an average over all relevant regimes of disease spreading as a basis of the ranking. A recently introduced concept of phase diagram of epidemic spreading is used as a framework in which several types of averaging are studied. The epidemic centrality is compared to structural properties of nodes such as node degree, k-cores and betweenness. There is a growing trend of epidemic centrality with degree and k-cores values, but the variation of epidemic centrality is much smaller than the variation of degree or k-cores value. It is found that the epidemic centrality of the structurally peripheral nodes is of the same order of magnitude as the epidemic centrality of the structurally central nodes. The implications of these findings for the distributions of resources to counter disease spreading are discussed.  相似文献   

4.
Identifying influential nodes in complex networks   总被引:4,自引:0,他引:4  
Identifying influential nodes that lead to faster and wider spreading in complex networks is of theoretical and practical significance. The degree centrality method is very simple but of little relevance. Global metrics such as betweenness centrality and closeness centrality can better identify influential nodes, but are incapable to be applied in large-scale networks due to the computational complexity. In order to design an effective ranking method, we proposed a semi-local centrality measure as a tradeoff between the low-relevant degree centrality and other time-consuming measures. We use the Susceptible-Infected-Recovered (SIR) model to evaluate the performance by using the spreading rate and the number of infected nodes. Simulations on four real networks show that our method can well identify influential nodes.  相似文献   

5.
Jing Yang 《Physica A》2010,389(18):3915-3921
Based on a classical contact model, the spreading dynamics on scale-free networks is investigated by taking into account exponential preferentiality in both sending out and accepting processes. In order to reveal the macroscopic and microscopic dynamic features of the networks, the total infection density ρ and the infection distribution ρ(k), respectively, are discussed under various preferential characters. It is found that no matter what preferential accepting strategy is taken, priority given to small degree nodes in the sending out process increases the total infection density ρ. To generate maximum total infection density, the unbiased preferential accepting strategy is the most effective one. On a microscopic scale, a small growth of the infection distribution ρ(k) for small degree classes can lead to a considerable increase of ρ. Our investigation, from both macroscopic and microscopic perspectives, consistently reveals the important role the small degree nodes play in the spreading dynamics on scale-free networks.  相似文献   

6.
H. Hooyberghs  J.O. Indekeu 《Physica A》2010,389(15):2920-2929
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (kq)α, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.  相似文献   

7.
Liang Wu 《Physica A》2008,387(14):3789-3795
A network growth model with geographic limitation of accessible information about the status of existing nodes is investigated. In this model, the probability Π(k) of an existing node of degree k is found to be super-linear with Π(k)∼kα and α>1 when there are links from new nodes. The numerical results show that the constructed networks have typical power-law degree distributions P(k)∼kγ and the exponent γ depends on the constraint level. An analysis of local structural features shows the robust emergence of scale-free network structure in spite of the super-linear preferential attachment rule. This local structural feature is directly associated with the geographical connection constraints which are widely observed in many real networks.  相似文献   

8.
We obtain closed form expressions for the expected conditional degree distribution and the joint degree distribution of the linear preferential attachment model for network growth in the steady state. We consider the multiple-destination preferential attachment growth model, where incoming nodes at each timestep attach to β existing nodes, selected by degree-proportional probabilities. By the conditional degree distribution p(?|k), we mean the degree distribution of nodes that are connected to a node of degree k. By the joint degree distribution p(k,?), we mean the proportion of links that connect nodes of degrees k and ?. In addition to this growth model, we consider the shifted-linear preferential growth model and solve for the same quantities, as well as a closed form expression for its steady-state degree distribution.  相似文献   

9.
In order to explore further the underlying mechanism of scale-free networks, we study stochastic secession as a mechanism for the creation of complex networks. In this evolution the network growth incorporates the addition of new nodes, the addition of new links between existing nodes, the deleting and rewiring of some existing links, and the stochastic secession of nodes. To random growing networks with preferential attachment, the model yields scale-free behavior for the degree distribution. Furthermore, we obtain an analytical expression of the power-law degree distribution with scaling exponent γ ranging from 1.1 to 9. The analytical expressions are in good agreement with the numerical simulation results.  相似文献   

10.
《Physica A》2002,303(1-2):261-272
Three models of growing random networks with fitness-dependent growth rates are analysed using the rate equations for the distribution of their connectivities. In the first model (A), a network is built by connecting incoming nodes to nodes of connectivity k and random additive fitness η, with rate (k−1)+η. For η>0 we find the connectivity distribution is power law with exponent γ=〈η〉+2. In the second model (B), the network is built by connecting nodes to nodes of connectivity k, random additive fitness η and random multiplicative fitness ζ with rate ζ(k−1)+η. This model also has a power law connectivity distribution, but with an exponent which depends on the multiplicative fitness at each node. In the third model (C), a directed graph is considered and is built by the addition of nodes and the creation of links. A node with fitness (α,β), i incoming links and j outgoing links gains a new incoming link with rate α(i+1), and a new outgoing link with rate β(j+1). The distributions of the number of incoming and outgoing links both scale as power laws, with inverse logarithmic corrections.  相似文献   

11.
张连明  邓晓衡  余建平  伍祥生 《中国物理 B》2011,20(4):48902-048902
This paper theoretically and empirically studies the degree and connectivity of the Internet's scale-free topology at an autonomous system (AS) level. The basic features of scale-free networks influence the normalization constant of degree distribution p(k). It develops a new mathematic model for describing the power-law relationships of Internet topology. From this model we theoretically obtain formulas to calculate the average degree, the ratios of the kmin-degree (minimum degree) nodes and the kmax-degree (maximum degree) nodes, and the fraction of the degrees (or links) in the hands of the richer (top best-connected) nodes. It finds that the average degree is larger for a smaller power-law exponent λ and a larger minimum or maximum degree. The ratio of the kmin-degree nodes is larger for larger λ and smaller kmin or kmax. The ratio of the kmax-degree ones is larger for smaller λ and kmax or larger kmin. The richer nodes hold most of the total degrees of Internet AS-level topology. In addition, it is revealed that the increased rate of the average degree or the ratio of the k_min-degree nodes has power-law decay with the increase of kmin. The ratio of the kmax-degree nodes has a power-law decay with the increase of kmax, and the fraction of the degrees in the hands of the richer 27% nodes is about 73% (the '73/27 rule'). Finally, empirically calculations are made, based on the empirical data extracted from the Border Gateway Protocol, of the average degree, ratio and fraction using this method and other methods, and find that this method is rigorous and effective for Internet AS-level topology.  相似文献   

12.
罗仕龙  龚凯  唐朝生  周靖 《物理学报》2017,66(18):188902-188902
k-核分解排序法对于度量复杂网络上重要节点的传播影响力具有重要的理论意义和应用价值,但其排序粗粒化的缺陷也不容忽视.最新研究发现,一些真实网络中存在局域连接稠密的特殊构型是导致上述问题的根本原因之一.当前的解决方法是利用边两端节点的外部连边数度量边的扩散性,采取过滤网络边来减少这种稠密结构给k-核分解过程造成的干扰,但这种方法并没有考虑现实网络上存在权重的普遍性.本文利用节点权重和权重分布重新定义边的扩散性,提出适用于加权网络结构的基于冗余边过滤的k-核分解排序算法:filter-core.通过世界贸易网、线虫脑细胞网和科学家合著网等真实网络的SIR(susceptible-infectedrecovered)传播模型的仿真结果表明,该算法相比其他加权k-核分解法,能够更准确地度量加权网络上具有重要传播影响力的核心节点及核心层.  相似文献   

13.
We present a new information theoretic approach for network characterizations. It is developed to describe the general type of networks with n nodes and L directed and weighted links, i.e., it also works for the simpler undirected and unweighted networks. The new information theoretic measures for network characterizations are based on a transmitter-receiver analogy of effluxes and influxes. Based on these measures, we classify networks as either complex or non-complex and as either democracy or dictatorship networks. Directed networks, in particular, are furthermore classified as either information spreading and information collecting networks.The complexity classification is based on the information theoretic network complexity measure medium articulation (MA). It is proven that special networks with a medium number of links (Ln1.5) show the theoretical maximum complexity . A network is complex if its MA is larger than the average MA of appropriately randomized networks: MA>MAr. A network is of the democracy type if its redundancy R<Rr, otherwise it is a dictatorship network. In democracy networks all nodes are, on average, of similar importance, whereas in dictatorship networks some nodes play distinguished roles in network functioning. In other words, democracy networks are characterized by cycling of information (or mass, or energy), while in dictatorship networks there is a straight through-flow from sources to sinks. The classification of directed networks into information spreading and information collecting networks is based on the conditional entropies of the considered networks (H(A/B)=uncertainty of sender node if receiver node is known, H(B/A)=uncertainty of receiver node if sender node is known): if H(A/B)>H(B/A), it is an information collecting network, otherwise an information spreading network.Finally, different real networks (directed and undirected, weighted and unweighted) are classified according to our general scheme.  相似文献   

14.
After Xiao et al. [W.-K. Xiao, J. Ren, F. Qi, Z.W. Song, M.X. Zhu, H.F. Yang, H.Y. Jin, B.-H. Wang, Tao Zhou, Empirical study on clique-degree distribution of networks, Phys. Rev. E 76 (2007) 037102], in this article we present an investigation on so-called k-cliques, which are defined as complete subgraphs of k (k>1) nodes, in the cooperation-competition networks described by bipartite graphs. In the networks, the nodes named actors are taking part in events, organizations or activities, named acts. We mainly examine a property of a k-clique called “k-clique act degree”, q, defined as the number of acts, in which the k-clique takes part. Our analytic treatment on a cooperation-competition network evolution model demonstrates that the distribution of k-clique act degrees obeys Mandelbrot distribution, P(q)∝(q+α)γ. To validate the analytical model, we have further studied 13 different empirical cooperation-competition networks with the clique numbers k=2 and k=3. Empirical investigation results show an agreement with the analytic derivations. We propose a new “heterogeneity index”, H, to describe the heterogeneous degree distributions of k-clique and heuristically derive the correlation between H and α and γ. We argue that the cliques, which take part in the largest number of acts, are the most important subgraphs, which can provide a new criterion to distinguish important cliques in the real world networks.  相似文献   

15.
Jian-Wei Wang  Li-Li Rong 《Physica A》2009,388(8):1731-1737
Most previous existing works on cascading failures only focused on attacks on nodes rather than on edges. In this paper, we discuss the response of scale-free networks subject to two different attacks on edges during cascading propagation, i.e., edge removal by either the descending or ascending order of the loads. Adopting a cascading model with a breakdown probability p of an overload edge and the initial load (kikj)α of an edge ij, where ki and kj are the degrees of the nodes connected by the edge ij and α is a tunable parameter, we investigate the effects of two attacks for the robustness of Barabási-Albert (BA) scale-free networks against cascading failures. In the case of α<1, our investigation by the numerical simulations leads to a counterintuitive finding that BA scale-free networks are more sensitive to attacks on the edges with the lowest loads than the ones with the highest loads, not relating to the breakdown probability. In addition, the same effect of two attacks in the case of α=1 may be useful in furthering studies on the control and defense of cascading failures in many real-life networks. We then confirm by the theoretical analysis these results observed in simulations.  相似文献   

16.
Percolation theory is extensively studied in statistical physics and mathematics with applications in diverse fields. However, the research is focused on systems with only one type of links, connectivity links. We review a recently developed mathematical framework for analyzing percolation properties of realistic scenarios of networks having links of two types, connectivity and dependency links. This formalism was applied to study Erdős-Rényi (ER) networks that include also dependency links. For an ER network with average degree [`(k)]\bar{k} that is composed of dependency clusters of size s, the fraction of nodes that belong to the giant component, P , is given by P=ps-1[1-exp(-[`(k)]pP) ]sP_{\infty}=p^{s-1}[1-\exp{(-\bar{k}pP_{\infty})} ]^{s} where 1−p is the initial fraction of randomly removed nodes. Here, we apply the formalism to the study of random-regular (RR) networks and find a formula for the size of the giant component in the percolation process: P =p s−1(1−r k ) s where r is the solution of r=p s (r k−1−1)(1−r k )+1, and k is the degree of the nodes. These general results coincide, for s=1, with the known equations for percolation in ER and RR networks respectively without dependency links. In contrast to s=1, where the percolation transition is second order, for s>1 it is of first order. Comparing the percolation behavior of ER and RR networks we find a remarkable difference regarding their resilience. We show, analytically and numerically, that in ER networks with low connectivity degree or large dependency clusters, removal of even a finite number (zero fraction) of the infinite network nodes will trigger a cascade of failures that fragments the whole network. Specifically, for any given s there exists a critical degree value, [`(k)]min\bar{k}_{\min}, such that an ER network with [`(k)] £ [`(k)]min\bar{k}\leq \bar{k}_{\min} is unstable and collapse when removing even a single node. This result is in contrast to RR networks where such cascades and full fragmentation can be triggered only by removal of a finite fraction of nodes in the network.  相似文献   

17.
In this paper, we study the information traffic flow in communication networks with scale-free topology. We consider the situation arising when packets are delivered to non-homogeneously selected destinations. It is found that the network capacity Rc increases with the increase of 〈k〉 (average degree of destination nodes) under local routing strategy. In contrast, Rc is essentially independent of 〈k〉 under shortest path strategy. Based on this finding, an integrated routing strategy that can enhance network capacity is proposed by combining the two strategies.  相似文献   

18.
康玲  项冰冰  翟素兰  鲍中奎  张海峰 《物理学报》2018,67(19):198901-198901
复杂网络多影响力节点的识别可以帮助理解网络的结构和功能,具有重要的理论意义和应用价值.本文提出一种基于网络区域密度曲线的多影响力节点的识别方法.应用两种不同的传播模型,在不同网络上与其他中心性指标进行了比较.结果表明,基于区域密度曲线的识别方法能够更好地识别网络中的多影响力节点,选中的影响力节点之间的分布较为分散,自身也比较重要.本文所提方法是基于网络的局部信息,计算的时间复杂度较低.  相似文献   

19.
In this paper, we present a simple rule which assigns fitness to each edge to generate random pseudofractal networks (RPNs). This RPN model is both scale-free and small-world. We obtain the theoretical results that the power-law exponent is γ=2+1/(1+α) for the tunable parameter α>-1, and that the degree distribution is of an exponential form for others. Analytical results also show that an RPN has a large clustering coefficient and can process hierarchical structure as C(k)∼k-1 that is in accordance with many real networks. And we prove that the mean distance L(N) scales slower logarithmically with network size N. In particular, we explain the effect of nodes with degree 2 on the clustering coefficient. These results agree with numerical simulations very well.  相似文献   

20.
We investigate exponential families of random graph distributions as a framework for systematic quantification of structure in networks. In this paper we restrict ourselves to undirected unlabeled graphs. For these graphs, the counts of subgraphs with no more than k links are a sufficient statistics for the exponential families of graphs with interactions between at most k links. In this framework we investigate the dependencies between several observables commonly used to quantify structure in networks, such as the degree distribution, cluster and assortativity coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号