首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N6,O2′-Dibutyryl cyclic adenosine 3′,5′-monophosphate (DBcAMP) injected into rats bearing MTW9 mammary carcinoma resulted in an early disappearance of tumor microsomal glucose-6-phosphate dehydrogenase activity while mitochondrial and supernatant isozyme activities were not affected. Prolonged DBcAMP treatment of rats bearing 5123 hepatoma significantly decreased all glucose-6-phosphate dehydrogenase isozyme activities but did not alter host liver isozyme activities or liver regeneration. Since DBcAMP treatment arrested growth of these tumors, the loss of microsomal glucose-6-phosphate dehydrogenase may be an early event in the inhibition of tumor growth in vivo.  相似文献   

2.
Pierisin-1 identified from the cabbage butterfly, Pieris rapae, is a novel mono-ADP-ribosylating toxin that transfers the ADP-ribose moiety of NAD at N(2) of dG in DNA. Resulting mono-ADP-ribosylated DNA adducts cause mutations and the induction of apoptosis. However, little is known about checkpoint responses elicited in mammalian cells by the formation of such bulky DNA adducts. In the present study, it was shown that DNA polymerases were blocked at the specific site of mono-ADP-ribosylated dG, which might lead to the replication stress. Pierisin-1 treatment of HeLa cells was found to induce an intra-S-phase arrest through both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) and ATM pathways, and ATR pathway also contributes to a G(2)-M-phase delay. In the colony survival assays, Rad17(-/-) DT40 cells showed greater sensitivity to pierisin-1-induced cytotoxicity than wild-type and ATM(-/-) DT40 cells, possibly due to defects of checkpoint responses, such as the Chk1 activation. Furthermore, apoptotic 50-kb DNA fragmentation was observed in the HeLa cells, which was well correlated with occurrence of phosphorylation of Chk2. These results thus suggest that pierisin-1 treatment primarily activates ATR pathway and eventually activates ATM pathway as a result of the induction of apoptosis. From these findings, it is suggested that mono-ADP-ribosylation of DNA causes a specific type of fork blockage that induces checkpoint activation and signaling.  相似文献   

3.
4.
Adenylate cyclase activity and 3′, 5′ cyclic adenosinemonophosphate (cAMP) have been followed through the heat-synchronized cell cycle of Tetrahymena pyriformis. While the specific activity of adenylate cyclase remained essentially constant throughout the cycle, cAMP oscillated (between 10 and 50 pmoles/mg protein) through two cycles. Minima were observed at each division (DS border) and maxima at each SG2 border. Each heat shock caused slight temporary reduction in cyclase activity. Further observations suggest to us that adenylate cyclase shows conformational changes in response to temperature-induced alterations and to changes in lipid composition of membranes.  相似文献   

5.
The presence and synthesis of c-myc protein and mRNA in the cell cycle has been studied. We find that c-myc mRNA is present, at equivalent levels, at all times in the cell cycle with the possible exception of mitosis. Furthermore, we demonstrate that this mRNA is transcribed in both G1 and G2 phases. An analysis of the c-myc protein in vivo shows that de novo synthesis occurs in G1 and G2 and the protein turns over with a half-life of approximately 20-30 min in both phases. Furthermore, the level of c-myc protein rapidly increases in cell populations when they re-initiate the cell cycle, thereafter decreasing as the culture reaches quiescence. The results therefore suggest that expression of c-myc can be rapidly modulated and that it is activated during the G0 to G1 transition, but is expressed thereafter in the cell cycle.  相似文献   

6.
7.
The effects of prostaglandins (PGs) A and J, which are anti-tumor eicosanoids, on the proliferation of cultured vascular smooth muscle cells were investigated. Serum-stimulated DNA synthesis was potently inhibited by PGA1, PGA2, PGJ2, and delta 12-PGJ2 in similar dose-dependent fashions. The effects of PGA1 and PGA2 were reversible when they were removed from the culture media, whereas recoveries were only partial in the cells treated with PGJ2 and delta 12-PGJ2. PGs were effective even if they were added immediately before entry into S phase. Inhibition of DNA synthesis was sustained when hydroxyurea, which blocks cell cycle at the G1/S border, was added after the removal of PGA2, and vice versa; PGs blocked DNA synthesis when they were added after the removal of hydroxyurea. Levels of c-myc mRNA formed two peaks during the G1 phase, at 1-2 h and at 8-12 h. The PGs did not affect the first elevation, but enhanced the second and sustained it up to 18-24 h, whereas in controls, c-myc mRNA decreased quickly after entry into S phase. The rate of degradation of c-myc mRNA was much smaller in PG-treated cells than in nontreated cells. We conclude, therefore, that PGA and PGJ inhibit a crucial event(s) in the cell cycle occurring at the G1/S border, but that this inhibition is not accompanied by the reduction in c-myc gene expression in contrast with some types of tumor cells treated with PGs.  相似文献   

8.
9.
The proliferation of dog thyrocytes in primary culture is stimulated by three distinct intracellular signaling pathways: (1) the thyrotropin or forskolin-cyclic AMP-mediated cascade which is compatible with the differentiated state of the cell; (2) the protein kinase C pathway activated by diacylglycerol and phorbol esters; and (3) a protein tyrosine kinase system activated by epidermal growth factor. The two latter pathways also induce dedifferentiation. The activation of the three cascades induced the expression of the protooncogenes c-fos and c-myc with dose-response curves similar to those for DNA synthesis. After TPA and EGF, the time courses of stimulation of c-fos and c-myc were the same as those for mitogenically stimulated fibroblasts. However, after the cyclic AMP stimulation, c-myc expression was biphasic with an enhancement at 1 h followed by a down-regulation. A similar inhibition by cyclic AMP was also observed on the increased c-myc expression induced by EGF. This down-regulation is suppressed by cycloheximide, which suggests the involvement of a neosynthesized or a labile protein intermediate. The action of cyclic AMP on c-myc mRNA levels could be related to the opposite requirements of the stimulation of both proliferation and differentiation expression by the cyclic AMP pathway in the differentiated thyrocytes.  相似文献   

10.
Cell cycle phase in Dictyostelium is correlated with a different preference for either spore or stalk differentiation. Cells which start development early in the cell cycle (E cells) exhibit a strong tendency to sort to the prestalk region of slugs, while late cell cycle cells (L cells) sort to the prespore region. We investigated the expression of the cAMP chemotactic system during development of synchronized E and L cells and found that E cells exhibit cAMP-binding activity, cell surface cAMP-phosphodiesterase (mPDE) activity, and the ability to relay cAMP signals at least 2 hr earlier and to higher levels than L cells. We hypothesize that E cells are prestalk sorters because they are the first to initiate aggregation centers and respond most effectively with chemotaxis and signal relay.  相似文献   

11.
M H Melner  W A Lutin  D Puett 《Life sciences》1982,30(23):1981-1986
Epidermal growth factor (EGF) and cyclic AMP were found to stimulate distinct protein kinase activities in plasma membranes prepared from the M5480P murine Leydig cell tumor. EGF stimulated the phosphorylation of two protein bands with apparent molecular weights of 60,000 and 180,000, while cyclic AMP stimulated the phosphorylation of a minor component of molecular weight 220,000. The two types of kinases could also be distinguished on the basis of differential susceptibility to conditions of membrane preparation. These results suggest that EGF stimulates a cyclic AMP-independent protein kinase in murine Leydig cell tumors at the level of the plasma membrane.  相似文献   

12.
The control of cell proliferation can result from the coupling of growth arrest and differentiation. In this regard, we recently demonstrated that growth arrest which precedes the differentiation of 3T3 T proadipocytes must occur at a distinct state in the G1 phase of the cell cycle (GD). Cells arrested at GD differ in several biological parameters from cells arrested in G1 at other states induced by either serum deprivation (GS) or nutrient deficiency (GN). Specifically, GD-arrested cells can differentiate in the absence of DNA synthesis and GD-arrested cells can be induced to proliferate when stimulated with 1-methyl-3-isobutylxanthine; GS- and GN-arrested cells cannot. In addition, GD-, GS- and GN-arrested cells reside at topographically distinct states in G1. We now report that GD-arrested proadipocytes are also distinct in that they are highly sensitive to a cytotoxic effect of 8-bromocyclic AMP, whereas GS- and GN-arrested cells are not.  相似文献   

13.
M Jacquet  J Camonis 《Biochimie》1985,67(1):35-43
This paper reviews recent data on the adenylate cyclase system of the yeast Saccharomyces cerevisiae. Since the discovery of yeast adenylate cyclase mutants and the possibility of molecular biological analysis, adenylate cyclase and the subsequent steps in the cAMP cascade have become subject of intense investigation. CYR1, the structural gene for the adenylate cyclase catalytic subunit is necessary for cell division and in diploid cells is involved in the choice between sporulation and cell division. The cell division cycle in yeast is initiated by a step called START, which has been defined by mutations causing an arrest of the cells in an unbudded state. One class of mutation causes the cell to arrest at the same stage of the cell division cycle as the pheromone implicated in conjugation. A second class causes cells to cease growth in a different manner, but one which is similar to the arrest brought about by nutient deprivation. The adenylate cyclase gene belongs to the second class and has been identified as CDC35. Two genes of the first class have been cloned and sequenced. CDC28 codes for a kinase which has homology with the src proto-oncogene family. CDC36 is partly homologous with the oncogene ets. Two genes related to the ras oncogene family have also been implicated in the control of START. START can be dissociated in two subsequent phases, the first being controlled by the AMPc system and the second including proto-oncogenes. A model in which cAMP is a positive indicator of available nutrients such as nitrogen has been constructed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
Insulin elicits the activation of two distinct membrane-bound cyclic AMP phosphodiesterases when incubated at 37 degrees C for 5 min with intact hepatocytes: the 'dense-vesicle' enzyme and the peripheral-plasma-membrane enzyme. In hepatocytes the lysosomotropic agents chloroquine, methylamine and NH4Cl, as well as intracellular ATP depletion elicited by fructose or incubation with insulin at 22 degrees C, blocks selectively the activation of the 'dense-vesicle' enzyme. Incubation of hepatocytes with bacitracin, leupeptin and a variety of proteinase inhibitors failed to affect insulin's activation of these two cyclic AMP phosphodiesterases by distinct routes. It is suggested that activation of the 'dense-vesicle' enzyme occurs through a pathway triggered by the endocytosis, processing and recycling of the insulin receptor. This might involve the delivery, with subsequent activation, of a latent phosphodiesterase into this fraction.  相似文献   

17.
To maintain genomic stability following DNA damage, multicellular organisms activate checkpoints that induce cell cycle arrest or apoptosis. Here we show that genotoxic stress blocks cell proliferation and induces apoptosis of germ cells in the nematode C. elegans. Accumulation of recombination intermediates similarly leads to the demise of affected cells. Checkpoint-induced apoptosis is mediated by the core apoptotic machinery (CED-9/CED-4/CED-3) but is genetically distinct from somatic cell death and physiological germ cell death. Mutations in three genes--mrt-2, which encodes the C. elegans homolog of the S. pombe rad1 checkpoint gene, rad-5, and him-7-block both DNA damage-induced apoptosis and cell proliferation arrest. Our results implicate rad1 homologs in DNA damage-induced apoptosis in animals.  相似文献   

18.
19.
20.
Era is a low-molecular-weight GTPase essential for Escherichia coli viability. The gene encoding Era is found in the rnc operon, and the synthesis of both RNase III and Era increases with growth rate. Mutants that are partially defective in Era GTPase activity or that are reduced in the synthesis of wild-type Era become arrested in the cell cycle at the predivisional two-cell stage. The partially defective Era GTPase mutation ( era1 ) suppresses several temperature-sensitive lethal alleles that affect chromosome replication and chromosome partitioning but not cell division. Our results suggest that Era plays an important role in cell cycle progression at a specific point in the cycle, after chromosome partitioning but before cytokinesis. Possible functions for Era in cell cycle progression and the initiation of cell division are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号