首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this article, a variational iteration method (VIM) is performed to give approximate and analytical solutions of nonlinear ordinary differential equation systems such as a model for HIV infection of CD4+ T cells. A modified VIM (MVIM), based on the use of Padé approximants is proposed. Some plots are presented to show the reliability and simplicity of the methods.  相似文献   

2.
In this paper, we introduce fractional-order derivatives into a model of HIV infection of CD4+ T-cells with time delay. We deal with the stability of both the viral free equilibrium and the infected equilibrium. Criteria are given to ensure that both the equilibria are asymptotically stable for all delay under some conditions. Numerical simulations are carried out to illustrate the results.  相似文献   

3.
The precise detection of K+ ion is crucial because K+ ion plays a leading role in membrane transport. Current K+ ion detection methods suffered low resolution and detection limit. Calix[4]crown-5 derivatives are well known as K+ ionophores. We described here a K+ ion-sensing system using a self-assembled monolayer of calix[4]crown-5 derivative (calix[4]crown) modified gold chip based on surface plasmon resonance (SPR). The calix[4]crown sensing layer was characterized by atomic-force microscopy (AFM), SPR, Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS) and cyclic voltammetry (CV). It was found calix[4]crown was assembled as a monolayer on Au surface. The SPR angle was found to be modulated by various concentrations of K+ ion due to the interaction between the calix[4]crown and K+ ion. This calix[4]crown monolayer showed a more sensitive and selective binding toward potassium ion over other alkali and alkaline earth metal ions. From the simple SPR spectroscopic analysis, we were able to monitor K+ ion concentration with a wide range of 1.0 × 10−12 to 1.0 × 10−2 M in an aqueous solution with a pH 6–8. These experimental results showed a useful method for the design of simple and precise potassium ion biosensors.  相似文献   

4.
Filtration for microfluidic sample-collection devices is desirable for sample selection, concentration, preprocessing, and manipulation, but microfabricating the required sub-micrometer structures is an elaborate process. This article presents a simple method to integrate filters in polydimethylsiloxane (PDMS) devices to sample microorganisms in aqueous environments. An off-the-shelf membrane filter with 0.22-μm pores was embedded in a PDMS layer and sequentially bound with other PDMS channel layers. No leakage was observed during filtration. This device was validated by concentrating a large amount of biomass, from 15 × 107 to 3 × 108 cells/ml of cyanobacterium Synechocystis in simulated sample water with consistent performance across devices. The major advantages of this method are low cost, simple design, straightforward fabrication, and robust performance, enabling wide-utility of chip-based devices for field-deployable operations in environmental microbiology.  相似文献   

5.
6.
We studied an imaging-based technique for the rapid quantification of bio-particles in a dielectrophoretic (DEP) microfluidic chip. Label-free particles could be successively sorted and trapped in a continuous flow manner under the applied alternating current (AC) conditions. Both 2 and 3 μm polystyrene beads at a concentration of 1.0 × 107 particles ml−1 could be rapidly quantified within 5 min in our DEP system. Capturing efficiencies higher than 95% could be 2 μm polystyrene beads with a linear flow speed, applied voltage and frequency of 0.89 mm s−1, 20 Vp-p and 5 MHz. Yeast cells (Candida glabrata and Candida albicans) could also be captured even at a lower concentration of 2.5 × 105 cells ml−1. Images of aggregative particles taken from the designed trapping area were further processed based on the intensity of relative greyscale followed by correction of the particle numbers. The imaging-based quantification method showed higher agreement than that of the conventional counting chamber method and proved the stability and feasibility of our AC DEP system.  相似文献   

7.
A nucleic acid sensor capable of automated sample and reagent loading, real-time PCR, automated detection, and sample line cleaning was tested. Real-time PCR reactions were performed with Salmonella enterica in autoclaved and spent alfalfa sprout irrigation water. S. enterica boiled cells were detected over a range of approximately 104 to 108 CFU/reaction (rxn). It was possible to generate enough PCR product to visualize a band on a gel at the expected size over approximately five orders of magnitude from 3.2 × 103 to 108 CFU/rxn. Automated detection experiments yielded correct identification of 9/9 positive control reactions over a range of 104 to 108 CFU/rxn, correctly identified a negative control reaction, and a sample of 3.2 × 103 CFU/rxn was incorrectly identified as negative. Primer dimers were not seen in positive or negative control reactions with sprout irrigation water, suggesting that it may be possible to improve the detection limit simply by increasing the number of thermal cycles or by lowering the annealing temperature. The system required no interpretation of real-time PCR data by the operator. The entire process of loading, running the PCR, automated data interpretation, and sample line cleaning was completed in under 2 h and 20 min, significantly faster than it would take to ship a sample and have it tested by an independent laboratory.  相似文献   

8.
The Ho3+ and Pr3+ ions co-doped phosphate glasses were prepared by melt quenching procedure with the various composition of (70-x-y)P2O5 + 20SiO2 + 10CaO + xHo2O3 + yPr2O3 (x = 0.4, 0.6, 0.8, 1.0 mol%, y = 0.6, 0.8, 1.0 mol%). The structural investigation (based on X-ray diffraction analysis) confirmed amorphous character of these glass materials. The optical properties were studied. The glass samples have strong absorption at 360 nm, and the excitation light at 360 nm can excite Ho3+ and Pr3+ ions very well, causing them to produce synergistic luminescence. The glass sample 68.8P2O5 + 20SiO2 + 10CaO + 0.4Ho2O3 + 0.8Pr2O3 emits strong white light under 360 nm excitation. The chromaticity coordinate values are x = 0.3378, y = 0.3472 in white light region, and it has a moderate correlated color temperature (CCT) of 5277 K. Decay time data reveals that there is energy transfer from Pr3+ to Ho3+ ions. This glass will be a good material for white light and tunable light emitting.  相似文献   

9.
This article introduces a novel magnetic bead-based DNA extraction and purification device using active magnetic mixing approach. Mixing and separation steps are performed using functionalised superparamagnetic beads suspended in cell lysis buffer in a circular chamber that is sandwiched between two external magnetic coils. Non-uniform nature of magnetic field causes temporal and spatial distribution of beads within the chamber. This process efficiently mixes the lysis buffer and whole blood in order to extract DNA from target cells. Functionalized surface of the magnetic beads then attract the exposed DNA molecules. Finally, DNA-attached magnetic beads are attracted to the bottom of the chamber by activating the bottom magnetic coil. DNA molecules are extracted from magnetic beads by washing and re-suspension processes. In this study, a circular PMMA microchamber, 25 μL in volume, 500 μm in depth and 8 mm in diameter was fabricated to purify DNA from spiked bacterial cell cultures into the whole blood sample using Promega Magazorb DNA extraction kit. The lysis efficiency was evaluated using a panel of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial cells cultures into the blood sample to achieve approximately 100,000 copy levels inside the chip. Manufacturer’s standard extraction protocol was modified to a more simplified process suitable for chip-based extraction. The lysis step was performed using 5 min incubation at 56 °C followed by 5 min incubation at room temperature for binding process. Temperature rise was generated and maintained by the same external magnetic coils used for active mixing. The yield/purity and recovery levels of the extracted DNA were evaluated using quantitative UV spectrophotometer and real-time PCR assay, respectively. Real-time PCR results indicated efficient chip-based bacterial DNA extraction using modified extraction protocol comparable to the standard bench-top extraction process.  相似文献   

10.
A molecular valve, consisting of poly(acrylic acid) gel-coated Au mesh, was developed based on volume change of the gel in response to cation concentration. The valve closed when concentration of cations such as H+, Na+, K+, Ca2+, Cu2+, or Al3+ was low, whereas opened upon increase in its concentration. The valve re-closed when water was flowed. The concentration where the valve opens was found to increase in the order of Al3+, Ca2+, and Na+ (2 × 10−4, 5 × 10−4, and 6 × 10−3 M, respectively). The response to Cu2+ ion showed similar behaviour, but the opening concentration was ca. 2 × 10−4 M, which is lower than that of Ca2+ ion. The valve appeared to close over the pH range from 3 to 12, whereas to open below and above it. The fastest response time to open the valve (less than 1 min) was obtained for a solution of pH 1–2. The valve showed repeatability at least 25 cycles upon successive loading of a solution of pH 2 and water. Effects of anions and pressure were also studied.  相似文献   

11.
The optic alignment module containing out-of-plane 3D micro lenses, and micro optic fiber holders have been fabricated using tilted UV lithography technique in water with SU-8 photoresist (Ling and Lian in Proc SPIE 4979:402–409, 2007). Each holder is a circumscribed quadrilateral formed by a V-groove and pairs of fixed microclips, which will hold the fiber in position through the elastic deformation when the fiber is inserted. Since these microclips were fixed cantilever beams and its effective beam length, the distance between the fixed end of the beam and beam–fiber contact point, is very short (~62.5 μm), the stress on the beam is high even under a small (few microns) deformation. The inserted optical fiber was either too loose to lose its alignment accuracy, or too tight causing the clips to break because of dimensional tolerance. It becomes very difficult, if not impossible, to use them in practical applications. Therefore, the key issue of fabricating optical alignment module is to have a suitable stiffness of microclips with an appropriate deformation during the fiber insertion, which can provide enough force to hold the fiber for accurate alignment and avoid introducing neither significant viscous deformation nor the damage to the clips. In this paper, a novel technique to fabricate SU-8 cantilever beam as elastic clamping device in optical fiber holder is proposed. Simulation based on SU-8 material properties indicates that for a 250-μm-long, 50-μm-thick SU-8 beam the clamping force per unit beam width will range from 10 to 100 Newton/m as the deflection increased from 1.4 to 14 μm. This predicted performance is comparable to or even better than that of existing silicon nitride microclips in optical fiber holding application [Bostock et al. in J Micromech Microeng 8(4):343–360, 1998]. By using a two-mask process, we have fabricated free-end cantilever beams as fiber holding clips. In order to have longer beams over V-groove, the slots in the V-groove were introduced, which allow the beams extended deeper into the sloped V-groove walls. The micro alignment module with 250-μm-length cantilever beams as microclips for housing 125-μm-diameter optical fibers has been successfully fabricated using a 300-μm-thick SU-8 photoresist layer by a two-mask UV lithography processes. This approuch offers significant advantages over other techniques with respect to costs of material, simple in equipment, and easy in manufacture. These optical fiber holders with elastic microclips combined with pre-aligned out-of-plane 3D micro lenses make it possible that to build an integrated micro optic system with precise alignment accuracy on a wafer-scale.  相似文献   

12.
Ca (or Sr)TiO3:Eu3+, M (Li+ or Na+ or K+) and CaTiO3:Pr3+, M (Li+ or Na+ or Ag+ or K+ or Gd3+ or La3+) powders were prepared by combustion synthesis method and the samples were further heated to ~1000 °C to improve the crystallinity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and a scanning electron microscopy (SEM). The morphologies of SrTiO3:Eu3+, CaTiO3:Eu3+ or CaTiO3:Pr3+ powders co-doped with other metal ions were very similar. Small and coagulated particles of nearly cubical shapes with small size distribution having smooth and regular surface were formed. Photo-luminescence spectra of CaTiO3:Pr3+ and co-doped either with Li+, Na+, K+, Ag+, La3+ or Gd3+ ions showed red emissions at 613 nm due to the 1D2  3H4 transition of Pr3+. The variation of intensity of emission peak with different co-doping follows the order: K+ > Ag+ > Na+ > Li+ > La3+ > Gd3+. The characteristic emissions of CaTiO3:Eu3+ lattices had strong emission at 614 and 620 nm for 5D0  7F2 with other weak transitions observed at 580, 592, 654, 705 nm for 5D0  7Fn transitions where n = 0, 1, 3, 4 respectively in all host lattices. Photoluminescence intensity in SrTiO3:Eu3+ is more than CaTiO3:Eu3+ lattices. A remarkable increase of photoluminescence intensity (in 5D0  7F2 transition) was observed if co-doped with Li+ ions in CaTiO3:Eu3+ and SrTiO3:Eu3+.  相似文献   

13.
Electrochemical determination of amino acids on a Cu electrode was established as an attractive scheme for non-electroactive amino acids after microchip electrophoresis separation. Five amino acids (arginine, proline, histidine, valine, and serine) achieved efficient separation within 60 s on a titanium dioxide nanoparticles (TiO2 NPs) coated poly(dimethylsiloxane) (PDMS) microchip, and then successfully detected on a Cu electrode in end-channel detection mode. In the slightly basic borate medium, anodic currents occur for amino acids due to their ability to form Cu(II) complexes and thereby enhance the electrochemical dissolution of Cu electrode substrate. The increase of the anodic current measured is proportional to the amino acid concentration added to the solution, and therefore, enables direct detection of non-electroactive amino acids on the Cu electrode. The detection limits (S/N = 3) for arginine, proline, histidine, valine, and serine were measured to be 7, 6, 5, 6, and 5 μM, respectively, with the linear ranges all from 25 to 500 μM. In addition, compared with the native PDMS microchip, resolutions and separation efficiencies of amino acids on the modified microchip were considerably enhanced with the theoretical plate numbers of 8.9 × 103, 6.6 × 104, 4.8 × 104, 5.6 × 104, and 4.4 × 104 plates m−1, respectively. The proposed Cu electrode response demonstrated good reproducibility and stability, with no apparent loss of response for periods as long as 4 weeks.  相似文献   

14.
This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 μm thick and 500 μm wide were firstly fabricated in a negative photoresist onto a stainless steel plate. Copper micro-electroforming was used to replicate the micro-fluidic channels mold. Following by sputtering silver (Ag) with 1.2 μm thick, the metallic bipolar plates were completed. The silver layer is used for corrosive resistance. The completed mini-DMFC stack is a 3.5 × 3.5 cm2 fuel cell stack including a 1.5 × 1.5 cm2 MEA (membrane electrode assembly). Several MEAs were assembly into mini-DMFC stacks using the completed metallic bipolar plates. All test results showed the metallic bipolar plates suitable for mini-DMFC stacks. The maximum output power density is 9.3 mW/cm2 and current density is 100 mA/cm2 when using 8 vol.% methanol as fuel and operated at temperature 30°C. The output power result is similar to other reports by using conventional graphite bipolar plates. However, conventional graphite bipolar plates have certain difficulty to be machined to such micro-fluidic channels. The proposed micro-electroforming metallic bipolar plates are feasible to miniaturize DMFC stacks for further portable 3C applications.  相似文献   

15.
Customized trapping of magnetic particles   总被引:1,自引:1,他引:0  
This paper presents an efficient technique for trapping of magnetic particles in confined spatial locations using customized designs of micro-coils (MCs). Large magnetic field gradients of up to 20 T/mm and large magnetic forces in the range of 10−8 Newton on magnetic particles with diameter of 1 μm have been achieved using MCs with several planar geometrical configurations. A large magnetic field gradient is generated and enhanced by two structural parameters: the small width and high aspect ratio of each single conductor and the ferromagnetic pillars positioned at high-flux density locations. This arrangement creates very steep magnetic potential wells, in particular at the vicinity of the pillars. The system allowed capturing of suspended magnetic particles as far as 1,000 μm from the center of the device. Magnetic particles/cells have been trapped and confined in single and in arrays of deep magnetic potential wells corresponding to the MCs configuration.  相似文献   

16.
Uniformly sized droplets of soybean oil, MCT (medium-chain fatty acid triglyceride) oil and n-tetradecane with a Sauter mean diameter of d 3,2 = 26–35 μm and a distribution span of 0.21–0.25 have been produced at high throughputs using a 24 × 24 mm silicon microchannel plate consisting of 23,348 asymmetric channels fabricated by photolithography and deep reactive ion etching. Each channel consisted of a 10-μm diameter straight-through micro-hole with a length of 70 μm and a 50 × 10 μm micro-slot with a depth of 30 μm at the outlet of each channel. The maximum dispersed phase flux for monodisperse emulsion generation increased with decreasing dispersed phase viscosity and ranged from over 120 L m−2 h−1 for soybean oil to 2,700 L m−2 h−1 for n-tetradecane. The droplet generation frequency showed significant channel to channel variations and increased with decreasing viscosity of the dispersed phase. For n-tetradecane, the maximum mean droplet generation frequency was 250 Hz per single active channel, corresponding to the overall throughput in the device of 3.2 million droplets per second. The proportion of active channels at high throughputs approached 100% for soybean oil and MCT oil, and 50% for n-tetradecane. The agreement between the experimental and CFD (Computational Fluid Dynamics) results was excellent for soybean oil and the poorest for n-tetradecane.  相似文献   

17.
In this paper, a high-speed, low-cost and efficient design of reverse converter for the general three-moduli set {2α, 2β − 1, 2β + 1} where α < β is presented. The simple proposed architecture consists of a carry save adder (CSA) and a modulo adder. As a result it can be efficiently implemented in VLSI circuits. The values of α and β are set in order to provide the desired dynamic range and also to obtain a balanced moduli set. Based on the above, two new moduli sets {2n+k, 22n − 1, 22n + 1} and {22n−1, 22n+1 − 1, 22n+1 + 1}, which are the special cases of the moduli set {2α, 2β − 1, 2β + 1} are proposed. The reverse converters for these new moduli sets are derived from the proposed general architecture with better performance compared to the other reverse converters for moduli sets with similar dynamic range.  相似文献   

18.
SU-8 as resist material for deep X-ray lithography   总被引:3,自引:0,他引:3  
 A new negative tone resist for deep X-ray lithography is presented. This resist is a nine parts to one mixture of the EPON SU-8 resin with 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)propane (Tetrachlorobisphenol A, TCBA), the latter acting as the photoinitiator. The resist was irradiated at the synchrotron source of DCI at LURE. It was dried for 7 to 20 days beforehand over silica gel while under a light vacuum (20 mbar). Best results for a 150 μm high resist were obtained with a X-ray bottom dose of 3 kJ cm−3 and a post exposure bake at 33 °C. Differential Scanning Calorimetry measurements (DSC) determined the glass transition temperature of the resist. The glass transition for the undried, loose resist was 34.7 °C, and it was 28.7 °C when the resist was pressed on a silicon substrate. For a sample of the dried resist, the glass transition was 33.4 °C for the loose resist and 29.8 °C when it was pressed on a Silicon substrate. CD measurements were made on top surface of a set of 100 μm long columns structures, which were produced in 150 μm of this resist. These structures have a constant 100 μm pitch, and the structures themselves varied in width from 20 to 17 μm. For these structures, the CD was calculated to be 0.15 ± 0.03 μm. Received: 8 February 2000/Accepted: 3 March 2000  相似文献   

19.
In this paper, we introduce ordinary and delay differential equations to describe the interactions between a malignant tumour and the immune system in vivo in the presence of human immunodeficiency virus (HIV) infection of CD4+ T-cells. In the delay model, we take into account the time lags required by the healthy effector cell components to recognize the pathogens and tumour cells. The models consist of four populations: tumour cells, healthy effector cells (CD4+ T-cells), effector cells infected by HIVs and free viral particles. The presence of delay term in the model leads to a notable increase in the complexity of the observed behaviour. We investigate the qualitative behaviour of the models and find the conditions that guarantee the asymptotic stability of the steady states. Numerical simulations are provided to illustrate and extend the theoretical results. The obtained results are consistent with the real phenomena and give a better understanding of cancer immunity and viral oncogenesis.  相似文献   

20.
In this article, artificial neural network (ANN) is adopted to predict photovoltaic (PV) panel behaviors under realistic weather conditions. ANN results are compared with analytical four and five parameter models of PV module. The inputs of the models are the daily total irradiation, air temperature and module voltage, while the outputs are the current and power generated by the panel. Analytical models of PV modules, based on the manufacturer datasheet values, are simulated through Matlab/Simulink environment. Multilayer perceptron is used to predict the operating current and power of the PV module. The best network configuration to predict panel current had a 3–7–4–1 topology. So, this two hidden layer topology was selected as the best model for predicting panel current with similar conditions. Results obtained from the PV module simulation and the optimal ANN model has been validated experimentally. Results showed that ANN model provide a better prediction of the current and power of the PV module than the analytical models. The coefficient of determination (R2), mean square error (MSE) and the mean absolute percentage error (MAPE) values for the optimal ANN model were 0.971, 0.002 and 0.107, respectively. A comparative study among ANN and analytical models was also carried out. Among the analytical models, the five-parameter model, with MAPE = 0.112, MSE = 0.0026 and R2 = 0.919, gave better prediction than the four-parameter model (with MAPE = 0.152, MSE = 0.0052 and R2 = 0.905). Overall, the 3–7–4–1 ANN model outperformed four-parameter model, and was marginally better than the five-parameter model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号