首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

2.
Histology stands as a major discipline in the life science curricula, and the practice of teaching it is based on theoretical didactic strategies along with practical training. Traditionally, students achieve practical competence in this subject by learning optical microscopy. Today, students can use newer information and communication technologies in the study of digital microscopic images. A virtual microscopy program was recently introduced at Ghent University. Since little empirical evidence is available concerning the impact of virtual microscopy (VM) versus optical microscopy (OM) on the acquisition of histology knowledge, this study was set up in the Faculty of Medicine and Health Sciences. A pretest‐post test and cross‐over design was adopted. In the first phase, the experiment yielded two groups in a total population of 199 students, Group 1 performing the practical sessions with OM versus Group 2 performing the same sessions with VM. In the second phase, the research subjects switched conditions. The prior knowledge level of all research subjects was assessed with a pretest. Knowledge acquisition was measured with a post test after each phase (T1 and T2). Analysis of covariance was carried out to study the differential gain in knowledge at T1 and T2, considering the possible differences in prior knowledge at the start of the study. The results pointed to non‐significant differences at T1 and at T2. This supports the assumption that the acquisition of the histology knowledge is independent of the microscopy representation mode (VM versus OM) of the learning material. The conclusion that VM is equivalent to OM offers new directions in view of ongoing innovations in medical education technology. Anat Sci Educ 6: 307–315. © 2013 American Association of Anatomists.  相似文献   

3.
An innovative strategy called “progressive drawing” was used at the beginning (lid‐opener) and later (monotony‐breaker) during gross anatomy lectures. Diagrams were drawn on the classroom blackboard with anatomic structures added one by one. Students identified and labeled the diagrams and predicted the next structures to be drawn. Students felt that the strategy helped to activate prior knowledge, created interest in the current lecture, and made lecture sessions more interactive. The strategy has appeal for visual, auditory, read/write, and kinesthetic learners. Anat Sci Educ, 2010. © 2010 American Association of Anatomists.  相似文献   

4.
Videos can be used as didactic tools for self‐learning under several circumstances, including those cases in which students are responsible for the development of this resource as an audiovisual notebook. We compared students' and teachers' perceptions regarding the main features that an audiovisual notebook should include. Four questionnaires with items about information, images, text and music, and filmmaking were used to investigate students' (n = 115) and teachers' perceptions (n = 28) regarding the development of a video focused on a histological technique. The results show that both students and teachers significantly prioritize informative components, images and filmmaking more than text and music. The scores were significantly higher for teachers than for students for all four components analyzed. The highest scores were given to items related to practical and medically oriented elements, and the lowest values were given to theoretical and complementary elements. For most items, there were no differences between genders. A strong positive correlation was found between the scores given to each item by teachers and students. These results show that both students' and teachers' perceptions tend to coincide for most items, and suggest that audiovisual notebooks developed by students would emphasize the same items as those perceived by teachers to be the most relevant. Further, these findings suggest that the use of video as an audiovisual learning notebook would not only preserve the curricular objectives but would also offer the advantages of self‐learning processes. Anat Sci Educ 7: 209–218. © 2013 American Association of Anatomists.  相似文献   

5.
A stand‐alone online teaching module was developed to cover an area of musculoskeletal anatomy (structure of bone) found to be difficult by students. The material presented in the module was not formally presented in any other way, thus providing additional time for other curriculum components, but it was assessed in the final examination. The module was developed using “in‐house” software designed for academics with minimal computer experience. The efficacy and effectiveness of the module was gauged via student surveys, testing student knowledge before and after module introduction, and analysis of final examination results. At least 74% of the class used the module and student responses were positive regarding module usability (navigation, interaction) and utility (learning support). Learning effectiveness was demonstrated by large significant improvements in the post‐presentation test scores for “users” compared with “non‐users” and by the percentage of correct responses to relevant multiple choice questions in the final examination. Performance on relevant short answer questions in the final examination was, on average, comparable to that for other components. Though limited by study structure, it was concluded that the module produced learning outcomes equivalent to those generated by more traditional teaching methods. This “Do‐It‐Yourself” e‐learning approach may be particularly useful for meeting specific course needs not catered for by commercial applications or where there are cost limitations for generation of online learning material. The specific approaches used in the study can assist in development of effective online resources in anatomy. Anat Sci Educ 6: 107–113. © 2012 American Association of Anatomists.  相似文献   

6.
Ultrasonography is a noninvasive imaging modality, and modern ultrasound machines are portable, inexpensive (relative to other imaging modalities), and user friendly. The aim of this study was to explore student perceptions of the use of ultrasound to teach “living anatomy”. A module utilizing transthoracic echocardiography was developed and presented to undergraduate medical, science, and dental students at a time they were learning cardiac anatomy as part of their curriculum. Relevant cardiac anatomy was explored on a student volunteer and images were projected in real‐time to all students via an AV projection system. Students were asked to complete a questionnaire about the learning experience and were given the opportunity to provide open feedback. The students' evaluations of this learning experience were very positive. They agreed or strongly agreed that it was an effective way to teach anatomy (90% medical; 77% dental; 100% science) and that it was incorporated in a way that promoted reinforcement of the lecture material (83% medical; 76% dental; 100% science). They agreed or strongly agreed with statements that the experience was innovative (93% medical; 92% dental; 100% science) and stimulated interest in the subject matter (86% medical; 75% dental; 96% science), and that they would like to see more modules, exploring other anatomical sites, incorporated into the curricula (83% medical; 72% dental; 100% science). We believe that ultrasound could be a useful tool, in conjunction with traditional teaching methods, to reinforce the learning of anatomy of a variety of different undergraduate student groups. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

7.
The flipped spotters learning model is a modern student activity-based and learner-centered method in medical education. The aim of the study was to determine if the flipped spotters learning model improves students' learning. Participants were 1214 medical students of Polish (PD) and English (ED) divisions between 2013 and 2019 academic years at the University of Warmia and Mazury in Olsztyn, Poland. They were divided into a traditional group (control group) and a flipped spotters learning group (treatment group). Each flipped spotters learning group was asked to label anatomical structures on various specimens according to the structures name list prepared by the teacher on the multiple stations. The flipped spotters learning group leaders were instructed to take pictures with the appropriately marked structures on each of the human body prosections. After completion of the class, each flipped spotters team received photos for evaluation. In the flipped spotters learning model, the students strengthened their skills and knowledge by matching specimens independently as a form of practical laboratory activities. Students' performance in gross anatomy practical examinations between the group utilizing the flipped spotters learning model, and the group with the traditional teaching model was compared. Students participating in the treatment group achieved, on average 9.9 percentage points higher among PD students, and 13.0 percentage points higher among ED students than the control group in all nine practical examinations (the effect size ranging from 0.47 to 0.95). The results suggest the positive impact of flipped spotters model on improving student's performance in the practical examinations.  相似文献   

8.
This article describes the development of an interactive computer‐based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self‐directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed‐ended and open‐ended items. Closed‐ended items using a five‐point Likert‐scale assessed the format and navigation, instructional contents, group process, and learning process. Open‐ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self‐monitoring of their learning. Anat Sci Educ 6: 342–350. © 2013 American Association of Anatomists.  相似文献   

9.
Despite advances to move anatomy education away from its didactic history, there is a continued need for students to contextualize their studies to make learning more meaningful. This article investigates authentic learning in the context of an inquiry‐based approach to learning human gross anatomy. Utilizing a case‐study design with three groups of students (n = 18) and their facilitators (n = 3), methods of classroom observations, interviews, and artifact collection were utilized to investigate students' experiences of learning through an inquiry project. Qualitative data analysis through open and selective coding produced common meaningful themes of group and student experiences. Overall results demonstrate how the project served as a unique learning experience where learners engaged in the opportunity to make sense of anatomy in context of their interests and wider interdisciplinary considerations through collaborative, group‐based investigation. Results were further considered in context of theoretical frameworks of inquiry‐based and authentic learning. Results from this study demonstrate how students can engage anatomical understandings to inquire and apply disciplinary considerations to their personal lives and the world around them. Anat Sci Educ 10: 538–548. © 2017 American Association of Anatomists.  相似文献   

10.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

11.
12.
The flipped classroom (FC) model has emerged as an innovative solution to improve student‐centered learning. However, studies measuring student performance of material in the FC relative to the lecture classroom (LC) have shown mixed results. An aim of this study was to determine if the disparity in results of prior research is due to level of cognition (low or high) needed to perform well on the outcome, or course assessment. This study tested the hypothesis that (1) students in a FC would perform better than students in a LC on an assessment requiring higher cognition and (2) there would be no difference in performance for an assessment requiring lower cognition. To test this hypothesis the performance of 28 multiple choice anatomy items that were part of a final examination were compared between two classes of first year medical students at the University of Utah School of Medicine. Items were categorized as requiring knowledge (low cognition), application, or analysis (high cognition). Thirty hours of anatomy content was delivered in LC format to 101 students in 2013 and in FC format to 104 students in 2014. Mann Whitney tests indicated FC students performed better than LC students on analysis items, U = 4243.00, P = 0.030, r = 0.19, but there were no differences in performance between FC and LC students for knowledge, U = 5002.00, P = 0.720 or application, U = 4990.00, P = 0.700, items. The FC may benefit retention when students are expected to analyze material. Anat Sci Educ 10: 170–175. © 2016 American Association of Anatomists.  相似文献   

13.
Two questionnaires were used to investigate students' perceptions of their motivation to opt for reception learning (RL) or self‐discovery learning (SDL) in histology and their choices of complementary learning strategies (CLS). The results demonstrated that the motivation to attend RL sessions was higher than the motivation to attend SDL to gain new knowledge (P < 0.01) and to apply this acquired knowledge to diagnosis (P < 0.01), therapy (P < 0.01), and research (P < 0.05). Students also showed a stronger preference for RL based on motivations related to leadership (P < 0.01) and competition (P < 0.01), although the rates were very low in both cases (≤ 1.9 ± 1.1). Statistically significant differences were found between male and female students for leadership (higher in males), responsibility (higher in females), and acquiring new knowledge (higher in females only in RL). This study's findings for students' preferred CLS strategies suggested a greater need for additional complementary resources after RL than after SDL (P < 0.01). In conclusion, RL was associated with a greater need for complementary training resources such as textbooks, atlases, the internet, audiovisual media, and tutorials, whereas SDL was associated with a greater need to orient teaching and training toward medical practice. These results suggest the need to reorient both types of learning processes to enhance their effectiveness in teaching histology, especially in the case of SDL, which should place more emphasis on clinically oriented knowledge. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

14.
This article describes the introduction of a virtual microscope (VM) that has allowed preclinical histology teaching to be fashioned to better suit the needs of approximately 900 undergraduate students per year studying medicine, dentistry, or veterinary science at the University of Bristol, United Kingdom. Features of the VM implementation include: (1) the facility for students and teachers to make annotations on the digital slides; (2) in‐house development of VM‐based quizzes that are used for both formative and summative assessments; (3) archiving of teaching materials generated each year, enabling students to access their personalized learning resources throughout their programs; and (4) retention of light microscopy capability alongside the VM. Student feedback on the VM is particularly positive about its ease of use, the value of the annotation tool, the quizzes, and the accessibility of all components off‐campus. Analysis of login data indicates considerable, although variable, use of the VM by students outside timetabled teaching. The median number of annual logins per student account for every course exceeded the number of timetabled histology classes for that course (1.6–3.5 times). The total number of annual student logins across all cohorts increased from approximately 9,000 in the year 2007–2008 to 22,000 in the year 2010–2011. The implementation of the VM has improved teaching and learning in practical classes within the histology laboratory and facilitated consolidation and revision of material outside the laboratory. Discussion is provided of some novel strategies that capitalize on the benefits of introducing a VM, as well as strategies adopted to overcome some potential challenges. Anat Sci Educ 7: 389–398. © 2013 American Association of Anatomists.  相似文献   

15.
Scalpels are utilized by many different user groups for such purposes as medical procedures and dissection. Injuries caused by scalpels are a potential risk for scalpel users, and include injuries that may occur while mounting and removing the scalpel blade. Between 10% and 20% of all scalpel injuries in education and healthcare settings are reported to occur while scalpel blades are being mounted or removed. At present there are few published or “best practice” demonstrations of safe technique for scalpel blade mounting and removal. This brief article outlines a variation of the procedure for scalpel blade mounting and removal. It includes strategies developed to minimize risk or injury for the scalpel user, including providing a stable base for the hands and arms so as to prevent unnecessary large amplitude movements that may lead to injury of the scalpel user or a third party. Such a technique may promote scalpel safety, contribute to the development of “best practice” scalpel use, and help decrease injuries that may be caused while mounting or removing scalpel blades. Anat Sci Educ 7: 161–166. © 2013 American Association of Anatomists.  相似文献   

16.
A technology enhanced learning and teaching (TELT) solution, radiological anatomy (RA) eLearning, composed of a range of identification‐based and guided learning activities related to normal and pathological X‐ray images, was devised for the Year 1 nervous and locomotor course at the Faculty of Medicine, University of Southampton. Its effectiveness was evaluated using a questionnaire, pre‐ and post‐tests, focus groups, summative assessment, and tracking data. Since introduced in 2009, a total of 781 students have used RA eLearning, and among them 167 Year 1 students in 2011, of whom 116 participated in the evaluation study. Students enjoyed learning (77%) with RA eLearning, found it was easy to use (81%) and actively engaged them in their learning (75%), all of which were associated to the usability, learning design of the TELT solution and its integration in the curriculum; 80% of students reported RA eLearning helped their revision of anatomy and 69% stated that it facilitated their application of anatomy in a clinical context, both of which were associated with the benefits offered by the learning and activities design. At the end of course summative assessment, student knowledge of RA eLearning relevant topics (mean 80%; SD ±16) was significantly better as compared to topics not relevant to RA eLearning (mean 63%; SD ±15) (mean difference 18%; 95% CI 15% to 20%; P < 0.001). A well designed and integrated TELT solution can be an efficient method for facilitating the application, integration, and contextualization of anatomy and radiology to create a blended learning environment. Anat Sci Educ 7: 350–360. © 2013 American Association of Anatomists.  相似文献   

17.
Three‐dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer‐based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. Anat Sci Educ 6: 216–224. © 2013 American Association of Anatomists.  相似文献   

18.
Medical professionalism is a multifaceted paradigm and is an essential component of medical education. Gross anatomy is a laboratory to teach professionalism, and promoting critical reflection in medical students is a prerequisite to furthering professionalism. The aim of this study was to determine if professionalism case discussions during a Gross Anatomy course improve students' reflections using a validated reflection instrument (12 items; five‐point Likert scale where 1 = Disagree, 2 = Disagree with reservation, 3 = Neutral, 4 = Agree with reservation, 5 = Agree). Four facilitated reflection sessions were aimed at fostering reflective capacity through reflection on elements of professionalism. Results did not show a significant change between pre‐and postintervention reflection scores (3.45 ± 0.61 vs. 3.48 ± 0.51; P = 0.82). Historical control students were found to have significantly higher reflection scores when compared with postintervention students (3.91 ± 0.53 vs. 3.48 ± 0.51; P < 0.001). However, the historical control students were found to have significantly higher professionalism scores (P = 0.001) as compared with the intervention students. Student satisfaction was high, with 25 of 28 (89.2%) students reporting that the sessions should be included as a component of future anatomy courses. While reflection scores were not significantly increased as a result of the intervention, students expressed appreciation for the opportunity to discuss professionalism issues related to the dissection of cadavers. Additionally, the intervention students had both lower professionalism scores and lower reflection scores, which supports the idea that highly professional students are more capable of reflecting on professionalism. Future studies should determine whether this case discussion intervention improves objective measures of professionalism. Anat Sci Educ 7: 191–198. © 2013 American Association of Anatomists.  相似文献   

19.
Picturebook discussions are commonplace literacy events in contemporary classrooms. The different experiences, backgrounds and ways of being that individual students draw upon during talk around texts prompt a broad range of ways to make, negotiate and share meanings. In addition to developing students' literacy skills such as oral language, vocabulary and comprehension, these discussions have been shown to be instrumental in developing students' interpretive competence which is important for achieving learning outcomes. In this article, we report a study that investigated how four diverse groups of 10‐ and 11‐year‐old students and teachers from two schools experienced such reading events. The study found that making sense of these books was more productive when students were given permission to switch identities and make connections to their out‐of‐school cyber and popular culture worlds. Using discourse analytic techniques, we uncover the identity work during a number of discussions around two different picturebooks and show how this enabled these learners to enter the academic space and demonstrate interpretive competence.  相似文献   

20.
Near‐peer teaching involves more experienced students acting as tutors and has been widely used in anatomy education. This approach has many advantages for the learner due to the social and cognitive congruence they share with the teacher, however, the influence of distance between the teacher and learner on these congruences has yet to be explored. The aim of this study was to compare the attitudes and perceptions of the student learner towards neuroanatomy review sessions taught by either a senior medical student or a junior doctor. The students were randomly assigned to an allocated tutor. All tutors used standardized material and had access to identical resources. The type of allocated tutor was swapped between the two teaching sessions and 99 student feedback forms were collected in total. The rating for the overall quality of the teaching session was not significantly different between the junior doctors and senior medical students (P = 0.11). However, criteria closely relating to social and cognitive congruence such as “enjoyment of the session,” “delivery of the teaching,” and “was it a good use of time” were all rated significantly higher for the senior medical students (P < 0.05). The results of this study suggest that small increases in distance along the near‐peer teaching spectrum have an impact upon the student's perception of their learning experience. While all teachers were suitable role models it appears that junior doctors are too far removed from their own undergraduate experiences to share congruences with pre‐clinical medical students. Anat Sci Educ 7: 242–247. © 2013 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号