首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To eliminate capacity‐fading effects due to the loss of sulfur cathode materials as a result of polysulfide dissolution in lithium–sulfur (Li–S) cells, 3D carbon aerogel (CA) materials with abundant narrow micropores can be utilized as an immobilizer host for sulfur impregnation. The effects of S incorporation on microstructure, surface area, pore size distribution, and pore volume of the S/CA hybrids are studied. The electrochemical performance of the S/CA hybrids is investigated using electrochemical impedance spectroscopy, galvanostatical charge–discharge, and cyclic voltammetry techniques. The 3D porous S/CA hybrids exhibit significantly improved reversible capacity, high‐rate capability, and excellent cycling performance as a cathode electrode for Li–S batteries. The S/CA hybrid with an optimal incorporating content of 27% S shows an excellent reversible capacity of 820 mAhg?1 after 50 cycles at a current density of 100 mAg?1. Even at a current density of 3.2C (5280 mAg?1), the reversible capacity of 27%S/CA hybrid can still maintain at 521 mAhg?1 after 50 cycles. This strategy for the S/CA hybrids as cathode materials to utilize the abundant micropores for sulfur immobilizers for sulfur impregnation for Li–S battery offers a new way to solve the long‐term reversibility obstacle and provides guidelines for designing cathode electrode architectures.  相似文献   

2.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

3.
Lithium ion battery is the predominant power source for portable electronic devices, electrical vehicles, and back‐up electricity storage units for clean and renewable energies. High‐capacity and long‐life electrode materials are essential for the next‐generation Li‐ion battery with high energy density. Here bimetal‐organic‐frameworks synthesis of Co0.4Zn0.19S@N and S codoped carbon dodecahedron is shown with rooted carbon nanotubes (Co‐Zn‐S@N‐S‐C‐CNT) for high‐performance Li‐ion battery application. Benefiting from the synergetic effect of two metal sulfide species for Li‐storage at different voltages, mesoporous dodecahedron structure, N and S codoped carbon overlayer and deep‐rooted CNTs network, the product exhibits a larger‐than‐theoretical reversible Li‐storage capacity of 941 mAh g?1 after 250 cycles at 100 mA g?1 and excellent high‐rate capability (734, 591, 505 mAh g?1 after 500 cycles at large current densities of 1, 2, and 5 A g?1 , respectively).  相似文献   

4.
As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium‐sulfur (Li‐S) batteries. In this paper, a mesoporous nitrogen‐doped carbon (MPNC)‐sulfur nanocomposite is reported as a novel cathode for advanced Li‐S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verified by X‐ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC‐sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm‐2 with a high sulfur loading (4.2 mg S cm‐2) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm‐2) is demonstrated by using the novel cathode, which is crucial for the practical application of Li‐S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon‐sulfur composite cathodes for Li‐S batteries.  相似文献   

5.
Rational design of functional interlayer is highly significant in pursuit of high‐performance Li‐S batteries. Herein, a nanocrystalline niobium carbide (NbC) is developed via a facile and scalable autoclave technology, which is, for the first time, employed as the advanced interlayer material for Li‐S batteries. Combining the merits of strong polysulfides (PS) anchoring with high electric conductivity, the NbC‐coated membrane enables efficiently tamed PS shuttling and fast sulfur electrochemistry, achieving outstanding cyclability with negligible capacity fading rate of 0.037% cycle?1 over 1500 cycles, superb rate capability up to 5 C, high areal capacity of 3.6 mA h cm?2 under raised sulfur loading, and reliable operation even in soft‐package cells. This work offers a facile and effective method of promoting Li‐S batteries for practical application.  相似文献   

6.
7.
Issues with the dissolution and diffusion of polysulfides in liquid organic electrolytes hinder the advance of lithium–sulfur batteries for next‐generation energy storage. To trap and re‐utilize the polysulfides without hampering lithium ion conductivity, a bio‐inspired, brush‐like interlayer consisting of zinc oxide (ZnO) nanowires and interconnected conductive frameworks is proposed. The chemical effect of ZnO on capturing polysulfides has been conceptually confirmed, initially by using a commercially available macroporous nickel foam as a conductive backbone, which is then replaced by a free‐standing, ultra‐light micro/mesoporous carbon (C) nanofiber mat for practical application. Having a high sulfur loading of 3 mg cm?2, the sulfur/multi‐walled carbon nanotube composite cathode with a ZnO/C interlayer exhibits a reversible capacity of 776 mA h g?1 after 200 cycles at 1C with only 0.05% average capacity loss per cycle. A good cycle performance at a high rate can be mainly attributed to the strong chemical bonding between ZnO and polysulfides, fast electron transfer, and an optimized ion diffusion path arising from a well‐organized nanoarchitecture. These results herald a new approach to advanced lithium–sulfur batteries using brush‐like chemi‐functional interlayers.  相似文献   

8.
A molten lithium infusion strategy has been proposed to prepare stable Li‐metal anodes to overcome the serious issues associated with dendrite formation and infinite volume change during cycling of lithium‐metal batteries. Stable host materials with superior wettability of molten Li are the prerequisite. Here, it is demonstrated that a series of strong oxidizing metal oxides, including MnO2, Co3O4, and SnO2, show superior lithiophilicity due to their high chemical reactivity with Li. Composite lithium‐metal anodes fabricated via melt infusion of lithium into graphene foams decorated by these metal oxide nanoflake arrays successfully control the formation and growth of Li dendrites and alleviate volume change during cycling. A resulting Li‐Mn/graphene composite anode demonstrates a super‐long and stable lifetime for repeated Li plating/stripping of 800 cycles at 1 mA cm?2 without voltage fluctuation, which is eight times longer than the normal lifespan of a bare Li foil under the same conditions. Furthermore, excellent rate capability and cyclability are realized in full‐cell batteries with Li‐Mn/graphene composite anodes and LiCoO2 cathodes. These results show a major advancement in developing a stable Li anode for lithium‐metal batteries.  相似文献   

9.
The sp2‐hybridized nanocarbon (e.g., carbon nanotubes (CNTs) and graphene) exhibits extraordinary mechanical strength and electrical conductivity but limited external accessible surface area and a small amount of pores, while nanostructured porous carbon affords a huge surface area and abundant pore structures but very poor electrical conductance. Herein the rational hybridization of the sp2 nanocarbon and nanostructured porous carbon into hierarchical all‐carbon nanoarchitectures is demonstrated, with full inherited advantages of the component materials. The sp2 graphene/CNT interlinked networks give the composites good electrical conductivity and a robust framework, while the meso‐/microporous carbon and the interlamellar compartment between the opposite graphene accommodate sulfur and polysulfides. The strong confinement induced by micro‐/mesopores of all‐carbon nanoarchitectures renders the transformation of S8 crystal into amorphous cyclo‐S8 molecular clusters, restraining the shuttle phenomenon for high capacity retention of a lithium‐sulfur cell. Therefore, the composite cathode with an ultrahigh specific capacity of 1121 mAh g?1 at 0.5 C, a favorable high‐rate capability of 809 mAh g?1 at 10 C, a very low capacity decay of 0.12% per cycle, and an impressive cycling stability of 877 mAh g?1 after 150 cycles at 1 C. As sulfur loading increases from 50 wt% to 77 wt%, high capacities of 970, 914, and 613 mAh g?1 are still available at current densities of 0.5, 1, and 5 C, respectively. Based on the total mass of packaged devices, gravimetric energy density of GSH@APC‐S//Li cell is expected to be 400 Wh kg?1 at a power density of 10 000 W kg?1, matching the level of engine driven systems.  相似文献   

10.
Lithium‐sulfur (Li‐S) batteries are in the spotlight because their outstanding theoretical specific energy is much higher than those of the commercial lithium ion (Li‐ion) batteries. Li‐S batteries are tough competitors for future‐developing energy storage in the fields of portable electronics and electric vehicles. However, the severe “shuttle effect” of the polysulfides and the serious damage of lithium dendrites are main factors blocking commercial production of Li‐S batteries. Owing to their superior nanostructure, electrospun nanofiber materials commonly show some unique characteristics that can simultaneously resolve these issues. So far, various novel cathodes, separators, and interlayers of electrospun nanofiber materials which are applied to resolve these challenges are researched. This review presents the fundamental research and technological development of multifarious electrospun nanofiber materials for Li‐S cells, including their processing methods, structures, morphology engineering, and electrochemical performance. Not only does the review article contain a summary of electrospun nanofiber materials in Li‐S batteries but also a proposal for designing electrospun nanofiber materials for Li‐S cells. These systematic discussions and proposed directions can enlighten thoughts and offer ways in the reasonable design of electrospun nanofiber materials for excellent Li‐S batteries in the near future.  相似文献   

11.
The polysulfide shuttle reaction has severely limited practical applications of Li‐S batteries. Recently, functional materials that can chemically adsorb polysulfide show significant enhancement in cycling stability and Coulombic efficiency. However, the mechanism of the chemisorption and the control factors governing the chemisorption are still not fully understood. Here, it is demonstrated for the first time that the surface acidity of the host material plays a crucial role in the chemisorption of polysulfide. By tailoring the surface acidity of TiO2 via heteroatom doping, the polysulfide‐TiO2 interaction can be fortified and thus significantly the capacity fading be reduced to 0.04% per cycle. The discovery presented here sheds light on the mechanism of this interfacial phenomenon, and opens a new avenue that can lead to a practical sulfur/host composite cathode.  相似文献   

12.
Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g?1 at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application.  相似文献   

13.
Carbon‐coated Fe3O4 nanospindles are synthesized by partial reduction of monodispersed hematite nanospindles with carbon coatings, and investigated with scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, and electrochemical experiments. The Fe3O4? C nanospindles show high reversible capacity (~745 mA h g?1 at C/5 and ~600 mA h g?1 at C/2), high coulombic efficiency in the first cycle, as well as significantly enhanced cycling performance and high rate capability compared with bare hematite spindles and commercial magnetite particles. The improvements can be attributed to the uniform and continuous carbon coating layers, which have several functions, including: i) maintaining the integrity of particles, ii) increasing the electronic conductivity of electrodes leading to the formation of uniform and thin solid electrolyte interphase (SEI) films on the surface, and iii) stabilizing the as‐formed SEI films. The results give clear evidence of the utility of carbon coatings to improve the electrochemical performance of nanostructured transition metal oxides as superior anode materials for lithium‐ion batteries.  相似文献   

14.
15.
Lithium metal anodes show immense scope for application in high‐energy electronics and electric vehicles. Unfortunately, lithium dendrite growth and volume change leading to short lifespan and safety issues severely limit the feasibility of lithium metal batteries. A rational design of metal–organic framework (MOF)‐modified Li metal anode with optimized Li plating/stripping behavior via one‐step carbonization of ZIF‐67 is proposed. Experimental and theoretical simulation results reveal that carbonized MOFs with uniformly dispersed Co nanoparticles in N‐graphene (Co@N‐G) exhibit an electronic/ionic dual‐conductivity and significantly improved affinity with Li, and so serve as an ideal host for dendrite‐free lithium deposition, consequently leading to uniform lithium plating/stripping during cycling. As a result, the anode delivers highly stable cyclic performance with high coulombic efficiency (CE) at ultrahigh current densities (CE = 91.5% after 130 cycles at 10 mA cm?2, and CE = 90.4% after 80 cycles at 15 mA cm?2). Moreover, the practical applicability and functionality of such anodes are demonstrated through assembly of Li‐Co@N‐G/NCM full batteries exhibiting a long cycle life of 100 cycles with a high capacity retention of 92% at 1 C.  相似文献   

16.
17.
For lithium‐selenium batteries, commercial applications are hindered by the inferior electrical conductivity of selenium and the low utilization ratio of the active selenium. Here, we report a new baked‐in‐salt approach to enable Se to better infiltrate into metal‐complex‐derived porous carbon (Se/MnMC‐B). The approach uses the confined, narrow space that is sandwiched between two compact NaCl solid disks, thus avoiding the need for protection with argon or a vacuum environment during processing. The electrochemical properties for both lithium and sodium storage of our Se/MnMC‐B cathode were found to be outstanding. For lithium storage, the Se/MnMC‐B cathode (with 72% selenium loading) exhibited a capacity of 580 mA h g?1 after 1000 cycles at 1 C, and an excellent rate capability was achieved at 20 C and 510 mA h g?1. For sodium storage, a specific capacity of 535 mA h g?1 was achieved at 0.1 C after 150 cycles. These results demonstrate the potential of this approach as a new effective general synthesis method for confining other low melting point materials into a porous carbon matrix.  相似文献   

18.
Hollow carbon materials are considered promising sulfur reservoirs for lithium–sulfur batteries owing to their internal void space and porous conductive shell, providing high loading and utilization of sulfur. Since the pores in carbon materials play a critical role in the infusion of sulfur, access of the electrolyte, and the passage of lithium polysulfides (LPSs), the creation and tuning of hierarchical pore structures is strongly required to improve the electrochemical properties of sulfur/porous carbon composites, but remains a major challenge. Herein, a “brain‐coral‐like” mesoporous hollow carbon nanostructure consisting of an in situ‐grown N‐doped graphitic carbon nanoshell (NGCNs) matrix and embedded CoS2 nanoparticles as an efficient sulfur host is presented. The rational synthetic design based on metal–organic framework chemistry furnishes unusual multiple porosity in a carbon scaffold with a macrohollow in the core and microhollows and mesopores in the shell, without the use of any surfactant or template. The CoS2@NGCNs/S composite electrode facilitates high sulfur loading (75 wt%), strong adsorption of LPSs, efficient reaction kinetics, and stable cycle performance (903 mAh g?1 at 0.1 C after 100 cycles), derived from the synergetic effects of the dual hollow features, chemically active CoS2, and the conductive and mesoporous N‐doped carbon matrix.  相似文献   

19.
Novel carbon materials derived from metal‐organic frameworks (MOFs) have attracted much attention, but the commonly inevitable inward contraction during the carbonization process has restricted their structural variety and applications. In this work, a novel rigid‐interface induced outward contraction approach is reported for synthesizing hollow mesoporous carbon nanocubes (HMCNCs) by using ZIF‐8 nanocubes as precursors. HMCNCs exhibit a cubic morphology with the particle sizes slightly larger than ZIF‐8 nanocubes. Due to the unique outward contraction process, uniform carbon nanocubes with a hollow cavity, an outer microporous shell, and an inner mesoporous wall are simultaneously formed with a large pore size (25 nm), high surface area (1085.7 m2 g?1), high porosity (3.77 cm3 g?1), and high nitrogen content (12.2%). When used as a cathode material for Li–SeS2 batteries, the HMCNCs deliver a stable capacity of 812.6 mA h g?1 at 0.2 A g?1 after 100 cycles and an outstanding rate capability (455.1 mA h g?1 at 5.0 A g?1). The findings may pave the way for the construction of distinctive MOF‐derived carbon materials for various applications.  相似文献   

20.
Lithium–sulfur batteries are a promising next‐generation energy storage device owing to their high theoretical capacity and the low cost and abundance of sulfur. However, the low conductivity and loss of active sulfur material during operation greatly limit the rating capabilities and cycling stability of lithium–sulfur batteries. In this work, a unique sulfur host hybrid material comprising nanosized nickel sulfide (NiS) uniformly distributed on 3D carbon hollow spheres (C‐HS) is fabricated using an in situ thermal reduction and sulfidation method. In the hybrid material, the nanosized NiS provides a high adsorption capability for polysulfides and the C‐HS serves as a physical confinement for polysulfides and also a 3D electron transfer pathway. Moreover, NiS has strong chemical coupling with the C‐HS, favoring fast charge transfer and redox kinetics of the sulfur electrode. With a sulfur loading of up to 2.3 mg cm?2, the hybrid material‐based lithium–sulfur batteries offer a capacity decay as low as 0.013% per cycle and a capacity of 695 mA h g?1 at 0.5 C after 300 cycles. This unique 3D hybrid material with strong chemical coupling provides a promising sulfur host for high performance lithium–sulfur batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号