首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 670 毫秒
1.
分别以80目玉米粉、糙米粉、燕麦粉、麦麸粉作为营养杂粮粉生产原料,研究物料含水量、螺杆转速、机筒温度对产品品质指标径向膨化度、糊化度和吸水性指数的影响,在此基础上设计正交试验,确定挤压技术制备膨化营养杂粮粉的最佳工艺参数为物料含水量15%、螺杆转速130r/min、机筒温度160℃,此时产品径向膨化度为3.26,糊化度为91.87%,吸水性指数为491.8%。  相似文献   

2.
以大米粉为原料,采用挤压膨化法研究挤压膨化对大米粉糊化度及蛋白质体外消化率的影响,通过单因素及正交实验分析了物料含水量、螺杆转速、第五区温度对大米粉糊化度及蛋白质体外消化率的影响,分析得出挤压膨化大米粉的最佳参数为:物料含水量为18%,螺杆转速为190 r/min,第五区温度为190℃;在此实验条件下进行验证实验,糊化度为90.72%,蛋白质体外消化率为82.80%,挤压膨化后大米粉蛋白质体外消化率比未经挤压处理的大米粉蛋白质体外消化率提高了10.31%。本研究为大米精深加工提供一定的参考。  相似文献   

3.
以葛根粉和黑豆粉为主要原料,研究葛根粉与黑豆粉质量比、混合物料含水率、机筒Ⅲ区温度、螺杆主轴转速等因素对产品感官和糊化度的影响。通过单因素和正交试验优化葛根黑豆膨化食品的加工工艺,得到最佳工艺参数为机筒Ⅲ区温度150℃、螺杆主轴转速160 r/min、混合物料含水率17%、葛根粉与黑豆粉质量比1∶5,在该条件下生产出的产品具有较好的感官品质和糊化度。  相似文献   

4.
双螺杆挤压生产虾饲料的工艺参数研究   总被引:2,自引:0,他引:2  
采用双螺杆挤压机,以糊化度、耐水性、膨化度和密度为主要指标,研究物料水分质量分数、喂料速度、螺杆转速、揉和区和熟化区的机筒温度对最终产品质量特性的影响.研究表明:随物料水分含量增加,产品糊化度增大,耐水性增强,膨化度变小,密度增大;随喂料速度和螺杆转速增加,产品糊化度和耐水性增强,膨化度变大,密度减小;随揉和区和熟化区的机筒温度升高,糊化度增大,耐水性增强,熟化区机筒温度对产品密度影响较大,温度降低则密度增大.挤压虾饲料的适宜加工工艺参数为:物料水分质量分数为26%~32%,喂料速度为30 r/min,螺杆转速为70 r/min,揉和区和熟化区机筒温度分别为130和50℃.  相似文献   

5.
以大米、荞麦和黑豆为原料,在单因素试验的基础上考察机筒温度、螺杆转速和水分含量3个挤压操作参数对黄酮保持率和糊化度的影响。借助Design-Expert对黄酮保持率和糊化度2个指标进行多目标优化,最终确定该配方的最优工艺参数:机筒温度160.59℃,螺杆转速169.07r/min,水分含量23.90%。在该工艺条件下测得杂粮米挤出物的平均黄酮保持率和糊化度分别为82.45%和80.57%,与响应面预测值仅差0.56%和0.46%。上述结果表明该模型拟合度好,优化结果可靠。此工艺所得杂粮米制品的黄酮保持率高且糊化效果好,具有一定应用价值。  相似文献   

6.
以鲜猪肉、香芋粉和大米粉为原料,利用双螺杆挤压膨化技术研制一款咸味型香芋猪肉膨化食品。试验选取机筒温度(X1)、螺杆转速(X2)、物料湿度(X3)作为主要工艺参数,以断裂力、糊化度、膨化度、水分含量、感官评价作为评价指标,通过正交试验进行优化。结果表明,优化后工艺条件为机筒温度150℃,螺杆转速45 Hz,物料湿度15%,挤压膨化效果最佳。  相似文献   

7.
以豆渣为主要原料,复配杂粮及药食同源食材制备豆基杂粮米稀,以物料加水量、螺杆转速、Ⅲ区机筒温度为响应因素,糊化度为考察指标,在单因素试验的基础上,利用Design-Expert 8.0.6设计试验得到挤压膨化技术制备豆基杂粮米稀的最佳工艺条件。结果表明,在物料加水量12.5%、螺杆转速330 r/min、Ⅲ区机筒温度160 ℃的条件下,制备的豆基杂粮米稀具有较高的糊化度(91.47%),冲调时口感细腻、香味浓郁、不易结块。  相似文献   

8.
以鱼粉、棉籽粕为主要原料,通过挤压膨化技术制备水产饲料。根据Central Composite Design中心组合设计原理,运用Design-Expert实验优化软件,采用三因素五水平的响应面分析法,分析了螺杆转速、水分、机筒温度3个因素对产品的物理特性(淀粉糊化度、水中稳定性、含粉率)的影响规律及其交互作用,建立了相应的二次回归模型,优化了水产饲料的膨化工艺。结果表明,最佳的膨化工艺为:螺杆转速为65r/min,水分为27%,机筒温度为125℃。  相似文献   

9.
以糙米为原料,研究挤压过程中的工艺参数,包括物料粒度、物料水分含量、主机螺杆转速、挤压温度对目标参数的影响,利用Box-Behnken的中心组合实验设计,以糊化度、SDF(水溶性膳食纤维)得率为目标参数,通过响应面分析法,对挤压糙米的工艺操作参数进行优化,优化得到的最佳工艺操作参数为粒度60目,物料含水量20.4%,螺杆转速133r/min,温度164℃。在此条件下,挤出物糊化度为97.15%,SDF得率为2.556%,与理论值比较接近,说明该模型对优化挤压工艺条件可行。  相似文献   

10.
以碎米为主要原料,辅以其他谷物粉和食品添加剂以及微量营养素,对双螺杆挤压工艺条件进行研究,以期开发研制一种新型营养方便米饭。通过单因素试验确定了机筒温度(X1)、物料水分(X2)和螺杆转速(X3)3个试验因素的取值范围,在此基础上采用可旋转中心组合设计,综合考查X1、X2和X33个变量对糊化度(Y)的影响,推导出描述糊化度的二次回归模型,并对变量进行响应面分析,得出最佳挤压预处理工艺条件为:机筒温度127.2℃,物料水分33.8%,螺杆转速195.2r/min。  相似文献   

11.
以大豆、大米、鸡肉、全脂乳粉为原料,按一定比例混合,采用Box-Behnken中心组合试验研究双螺杆挤压工艺参数。综合考察物料含水率、喂料速度、螺杆转速、温度对糊化度的影响,在此基础上对变量进行响应面分析,得出最佳挤压参数是:物料含水率23.32%,五区温度105℃,螺杆转速160r/min,喂料速度30r/min。  相似文献   

12.
以粳米淀粉为原料,使用改良挤压技术制备低蛋白质构米,利用响应面分析法考察加工参数如物料含水率、螺杆转速和机筒温度的变化对低蛋白米质构特性的影响,并且以粳米的质构指标为参考指标,优化低蛋白质构米的制备工艺。结果表明,最优工艺参数为物料含水率35%,螺杆转速30r/min,机筒温度(糊化区温度)120℃,该工艺条件下,低蛋白质构米的硬度为(9 122±244)g,黏性为(-983±49)g.s,弹性为0.67±0.05,接近粳米的质构特性(硬度为(8 996±196)g,黏性为(-627±41)g.s,弹性为0.62±0.03)。同时,与粳米相比,其蛋白质含量非常低,为0.43%±0.01%,而且外观和色泽接近市售粳米,米粒完整,颜色均一,圆润光滑,轮廓分明,米质结构紧密。  相似文献   

13.
The present study investigated the effects of extrusion process variables (feed moisture, screw speed, and barrel temperature) on the physical [expansion ratio, water absorption index (WAI), and water solubility index (WSI)], pasting, and thermal properties of wheat-ginseng extrudates (WGE). A wheat flour-ginseng powder (GP) blend (10% GP, w/w) was extruded in a twin-screw extruder (L/D ratio of 25:1) with full factorial combinations of feed moisture (25, 30, and 35%), screw speed (200 and 300 rpm), and zone 5 barrel temperature (110, 120, 130, and 140°C). The expansion ratios of WGE were significantly increased with decreasing feed moisture, decreasing screw speed, and increasing barrel temperature. Increasing feed moisture significantly increased WAI values of WGE and significantly decreased WSI values of WGE. However, an increase in either screw speed or barrel temperature caused a significant decrease in WAI values of WGE and a significant increase in WSI values of WGE. Rapid visco analyzer peak viscosity values of WGE were significantly affected by changes in extrusion process variables studied, indicating that the degree of starch degradation and/or gelatinization in WGE is a very important factor associated with their peak viscosity. WAI values of WGE were positively correlated (r = 0.88, p ≤ 0.001) with peak viscosity values of WGE samples, whereas WSI values of WGE samples were negatively correlated (r = 0.82, p ≤ 0.001). Increasing feed moisture resulted in an increase in values of transition peak temperature (Tp) of WGE, whereas increasing screw speed and barrel temperature each led to a decrease in Tp values of WGE, determined by differential scanning calorimetry.  相似文献   

14.
The effect of enzyme concentration, feed rate, screw speed, moisture content, and barrel temperature on residence time distributions (RTDs) of rice flour in a co-rotating twin-screw extruder had been broadly investigated. Feed rate and screw speed as the most important operating variables affecting the mean residence time (MRT) were further emphasized by using a second-order central composite design for achieving high-efficiency enzymatic extrusion with other variables constant. Increasing enzyme concentration to 1‰ (db of starch), the MRT increased probably due to the largely reduced viscosity of extrudate caused by rapid gelatinization and degradation of starch. Limited range of moisture content and barrel temperature had only slight impact on MRT and axial mixing considering the required high enzymatic activity relying on their levels sensitively. Flow pattern of extruded rice with thermostable α-amylase was close to perfect mixing flow. Seven flow models were compared to fit the RTD data, and Yeh-Jaw simplified model showed the best fitting results for enzymatic extrusion. Overall, the mechanism of introduced enzyme affecting MRT and mixing actions of extrusion process is of industrial implication for main ingredients reactions and nutrients to retain during enzymatic extrusion.  相似文献   

15.
研究新型鲜湿方便米粉二级挤压工艺,考察生产过程中挤压关键参数(进料水分、喂料速度、一级机筒温度、二级机筒温度、模板孔径)对米粉品质的影响。实验以籼米(川种优3877)与粳米(隆两优534)为原料,利用响应面实验优化二级挤压工艺关键参数。结果表明,挤压参数能在一定范围内提高鲜湿方便米粉的品质。通过最佳二级挤压参数(进料水分41%、喂料速度0.50 kg/min、一级机筒温度179℃、二级机筒温度58℃、模板孔径1.0 mm)制作鲜湿方便米粉产品米香浓郁、富有弹性,综合品质较好。本研究可为鲜湿方便米粉连续化工业化生产提供参考。  相似文献   

16.
Soy flour was added at levels of 5%, 10%, and 15% of Hom Nil rice flour for extrusion at 190 °C barrel temperature and 350 rpm screw speed. The extruded snack qualities decreased inversely with soy flour. However, product qualities were considered to be optimised when soy flour at 5% was added. The effect of feed moisture content (15, 17, 19 g (100 g)?1 wb), barrel temperature (150, 170, 190 °C) and screw speed (350, 400, 450 rpm) on physicochemical properties of the snack were then investigated. The physicochemical properties of the product including expansion ratio, density, water absorption index (WAI), water solubility index (WSI) and hardness were evaluated. All properties were related, as linear equations, in terms of feed moisture content, barrel temperature, screw speed with relative correlation (R2) at 0.83–0.94. The snack properties along with consumer acceptance were all highest when the extruded condition were 15 g (100 g)?1 wb feed moisture content, 170 °C of barrel temperature and 450 rpm of screw speed.  相似文献   

17.
目的:采用双螺杆挤压工艺制备蛹虫草复合谷物杂粮膨化产品,并研究蛹虫草对谷物杂粮膨化产品淀粉糊化特性的影响。方法:以大米粉、糯米粉、薏米粉、红豆粉、黄豆粉、蛹虫草粉为原料,按照一定比例混合制成蛹虫草复合谷物杂粮粉进行挤压膨化实验,并在单因素试验的基础上,选择物料水分含量、螺杆转速、进料速率、挤压温度为影响因素,产品径向膨化率、糊化度、水分含量、吸水性和水溶性指数为指标,设计正交试验,用极差分析法优化出蛹虫草复合谷物杂粮膨化产品的最佳工艺,并利用快速黏度仪测定谷物杂粮膨化产品和蛹虫草复合谷物杂粮膨化产品的淀粉糊化特性。结果:蛹虫草复合谷物杂粮膨化产品的最优工艺参数为物料水分含量16%、螺杆转速180 r/min、机筒的5 段挤压温度80-90-120-140-165 ℃、进料速率15 r/min,此时蛹虫草复合谷物杂粮膨化产品的径向膨化率、糊化度、水分含量、水溶性和吸水性指数分别为3.015、84.32%、6.11%、29.65%、416.39%;与谷物杂粮膨化产品相比,蛹虫草复合谷物杂粮膨化产品峰值黏度、保持黏度、最终黏度、回生值显著下降。结论:蛹虫草复合谷物杂粮膨化产品挤压工艺可行,添加蛹虫草能够显著降低谷物杂粮膨化产品的糊化特征值,并抑制其淀粉分子的回生或重排。  相似文献   

18.
以双螺杆挤压机加工保鲜方便米饭,研究了进料糊化度、进料水分含量、进料粒度、螺杆转速对方便米饭品质的影响。通过分析感官评定与质构参数的相关性,确定以硬度和咀嚼性为指标评价挤压保鲜方便米饭的挤压工艺。采用单因素试验和正交试验,优化了挤压工艺条件:进料粒度0.425 mm,进料糊化度50%,进料水分质量分数25%,挤压机螺杆转速90 r/min。在此条件下制备的方便米饭硬度为113.56 g,咀嚼性为63.81。米饭颗粒饱满,色泽晶莹,咀嚼性适中,口感好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号