首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
应用富集因子分析法对贵阳市7种PM2.5主要排放源(土壤风沙尘、城市扬尘、道路尘、建筑水泥尘、钢铁尘、燃煤尘、机动车尾气尘)中的污染元素进行了分析。分析结果表明,贵阳市各PM2.5排放源中的污染元素均存在着不同程度的富集污染现象,这些元素的富集污染程度易受人类活动的影响,并经过长时间的积累在城区内富集,使得城区内PM2.5的污染现象突出。  相似文献   

2.
广州市区PM_(2.5)的污染特征   总被引:3,自引:0,他引:3  
陈瑜 《环境保护科学》2010,36(3):7-8,11
对广州市区PM2.5的污染状况进行了分析,结果表明广州市区的PM2.5呈现冬季浓度较高,夏季较低的季节性特征;PM2.5的日变化呈现出明显的双峰形;与PM10的相关性分析表明,PM2.5与PM10具有良好的线性关系。PM2.5/PM10的值约为0.59,表明广州市区空气中细颗粒物在PM10中的比重大于粗颗粒物,鉴于PM2.5的危害性及所占比例,应重视对其的监测。  相似文献   

3.
基于广安市2017年6月-2018年5月逐日平均国控站点空气质量监测数据,该文对广安市PM_(2.5)组成特征及污染贡献源进行解析。结果表明,监测期间广安市PM_(2.5)主要成分为元素碳(30%)、有机碳(30%)和混合碳(12%);颗粒物首要污染源为燃煤(22%),工艺过程源(19%)、扬尘源(18%)和二次源(18%)贡献率也较高,机动车、生物质和其他源贡献率都较低;工业源(工艺过程和燃煤)、扬尘源和机动车为广安市主要污染来源,不同季节污染源贡献率有所不同,春季扬尘源贡献突出,秋季主要表现为扬尘源、工业源(工艺过程和燃煤)和机动车,夏季和冬季工业源(工艺过程和燃煤)贡献率突出,其次为扬尘源;工业源(工艺过程和燃煤)、机动车、扬尘源、生物质燃烧是春季PM_(2.5)浓度上升的主要原因;夏季则是工业源(工艺过程和燃煤)、机动车、扬尘源;秋季机动车是导致PM_(2.5)升高的主要原因;冬季工业源(工艺过程和燃煤)、扬尘源、生物质燃烧是PM_(2.5)浓度上升的主要原因;污染期间应重点管控工业源(工艺过程和燃煤)、扬尘源和机动车,春季和冬季还应加强生物质燃烧源控制。  相似文献   

4.
基于泉州市区2014年1、4、7、10月的空气质量自动监测数据,分析了PM_(10)与PM_(2.5)污染水平并对其季节变化趋势进行探讨。结果表明,监测期间内,泉州市区PM10日均浓度变化范围为0.025~0.376mg/m3,PM2.5日均浓度变化范围为0.010~0.346mg/m3,PM_(10)与PM_(2.5)的年均日浓度分别为0.067mg/m3和0.034mg/m3。泉州市区大气中的PM_(10)与PM_(2.5)浓度均呈现出明显的季节变化趋势,春冬两季浓度高于夏秋两季。利用HYSPLIT-4模型对PM_(10)与PM_(2.5)浓度出现异常高值的时段进行气团后推轨迹推导,结果显示长距离传输和区域传输在不同时段对本地污染的主导作用不同。  相似文献   

5.
文章研究基于PM_(2.5)样品采集和水溶性离子测定,运用潜在源贡献分析法和WRF-CAMx模式识别分析了北京市和唐山市2017年1月PM_(2.5)的潜在源区和工业源传输矩阵,通过计算单位排放贡献,分析了京津冀典型工业源PM_(2.5)中一次颗粒物、硫酸盐和硝酸盐的区域贡献和分源贡献规律。结果表明,2017年1月北京和唐山PM_(2.5)浓度均高于国家二级标准,SNA占PM_(2.5)的32.85%~53.68%,且在污染时段,SNA及其前体物浓度均有明显提升;两地冬季潜在源主要受来自西北部内蒙古方向的远距离传输以及东南部渤海湾方向的中短距离传输这两部分污染源区的潜在影响,唐山受本地污染影响更大;从传输矩阵来看,北京和唐山的PM_(2.5)工业源外来贡献分别占总浓度的63.87%和8.66%,其中对北京PM_(2.5)浓度贡献较高的区域为唐山和京津冀中部地区,分别贡献了24.78%和21.18%,在污染日时段,受唐山和南部地区的PM_(2.5)传输贡献分别提升了5.27%和3.46%,受西北地区的影响减少了4.34%。对唐山贡献较高的区域为中部地区和东北部地区,为5.07%和2.10%,在污染日时段,外来传输贡献并没有显著波动(低于1%)。二次组分中,硝酸根的传输性最为显著;两地工业外来源单位排放贡献除却其各自周边地区较大以外,其西北传输通道沿线城市(张家口→北京→唐山)的单位排放贡献亦十分显著,且在这一通道上的外来输送,其第2层(非地面排放源)的单位排放贡献明显大于其他地区;从具体工业源来看,对北京市单位排放贡献最大的行业为其他工业源,对唐山则是冶金源。  相似文献   

6.
利用中流量空气颗粒物采样器在武汉市青山区进行连续采样,分析了2013年冬季大气PM_(2.5)的质量浓度,并采用ICP-AES方法研究了样品中19种金属元素的组成和特征。结果表明,PM_(2.5)质量浓度为47~353μg/m~3,参照《环境空气质量标准》(GB 3095-2012)中的二级标准,其中88.6%的样品质量浓度超标;富集因子分析结果表明Ca、Cu、Pb、Zn、Cd、Ni、Mn、Ti、V、As和Hg在PM_(2.5)中明显富集,主要来自人类活动;运用正定矩阵因子分解法(PMF)对PM_(2.5)来源进行了解析,结果表明交通源,工业源,路面扬尘,燃煤源和建筑源是武汉市青山区冬季PM_(2.5)的主要来源。  相似文献   

7.
北京市典型排放源PM_(2.5)成分谱研究   总被引:5,自引:1,他引:5  
为了建立和完善北京市PM_(2.5)本地化源谱,对北京市11类排放源PM_(2.5)进行采集,并测定其26种组分,分析了不同排放源源谱的组分特征.结果表明,在有组织排放源中,燃煤电厂PM_(2.5)中OC和Si含量很高,占PM_(2.5)的质量分数分别为8.56%和6.19%(平均值),而供热/工业锅炉排放PM_(2.5)中则是SO_4~(2-)(占48.38%)和OC(11.0%)比例最高,水泥窑炉PM_(2.5)中OC(7.12%)、Ca(4.81)和Si(4.41%)占有较大比例;垃圾焚烧排放的PM_(2.5)中Si、Ca、K和SO_4~(2-)均较高,分别占8.15%、9.36%、7.17%和6.79%,且Cl~-含量(2.5%)高于其他所有源,生物质燃烧源PM_(2.5)中OC(21.7%)、Si(6.75%)、Ca(6.15%)较为丰富,餐饮源PM_(2.5)中OC(19.44%)、SO_4~(2-)(5.76%)和K(3.11%)含量均较高;无组织开放源中,道路扬尘和土壤风沙PM_(2.5)化学组分含量变化较为一致,均是Si(分别为16.8%和9.3%)和OC(分别为8.89%和6.61%)最高,建筑水泥尘PM_(2.5)中Ca(17.46%)含量高于其他源;流动排放源PM_(2.5)中OC、EC比例最高,其中,重型柴油车的OC(29.79%)与EC(26.5%)排放比例相当,而轻型汽油车OC排放占有绝对优势(占75%).本文通过对比国内外部分排放源PM_(2.5)成分谱的差异,指出不同区域相同源类排放的PM_(2.5)化学组分差异较大,在应用受体模型中的化学质量平衡模型(CMB)判断受体颗粒物来源时,应基于本地的排放源成分谱,以避免较大的误差.  相似文献   

8.
基于WRF-CMAQ空气质量模型,定量模拟了氨排放对全国城市PM_(2.5)浓度的影响.结果表明,氨排放对全国城市硫酸盐、硝酸盐、铵盐及PM_(2.5)年均浓度贡献率分别为4.2%、99.8%、99.7%和29.8%,氨排放对硫酸盐年均浓度的影响较小,而对硝酸盐和铵盐年均浓度的影响极为显著.氨排放对1、4、7、10月四个典型月PM_(2.5)月均浓度的贡献量分别为20.15μg/m3、12.39μg/m3、13.20μg/m3、14.20μg/m3,其中1月PM_(2.5)受氨排放的影响最大.氨对PM_(2.5)影响较大的地区主要集中在河南、山东、湖北、河北等农业、畜牧业发达、氨排放量集中的地区,对PM_(2.5)年均浓度贡献量均超过20μg/m3.因此,控制氨排放将有效降低PM_(2.5)浓度,特别是可以显著减少硝酸盐和铵盐污染.  相似文献   

9.
通过对石家庄市2013年1~12月PM2.5和PM10实时数据的整理和分析,结果表明,石家庄市区大气中细颗粒物PM2.5和可吸入颗粒物PM10月均浓度变化呈明显的季节性,二者变化趋势基本一致,采暖期12-2月份浓度普遍高于其他月份,PM2.5和PM10浓度最高值均出现在1月份;春夏PM2.5和PM10浓度有所降低,7月份浓度最低。PM2.5和PM10存在显著的正相关关系。  相似文献   

10.
近年来,农业源NH_3排放被认为会引起局部地区PM_(2.5)浓度过高,造成严重雾霾频发。氨排放作为在控霾环节长期以来被忽视的问题,现在日益受到关注。综述了NH_3在PM_(2.5)形成中的作用机理:在潮湿环境中NH_3与NO_x和SO_2反应形成的二次无机颗粒物成为PM_(2.5)的重要组成部分;介绍了NH_3形成PM_(2.5)的研究方法,包括源清单法、源模型法和受体模型法;定量分析了我国NH_4~+和SNA分别在PM_(2.5)中所占的质量分数,NH_4~+占(6.53±2.92)%,SNA占(32.03±11.05)%;最后提出了综合治霾的针对性政策建议。  相似文献   

11.
利用电感耦合等离子体质谱(ICP-MS)技术和统计学方法研究了哈尔滨市郊区采集的2012-2013年23个PM2.5样品的污染来源及特征。17种与污染源及健康相关的元素含量分布分析表明,冬季和夏季的燃煤、汽车尾气排放对PM2.5的贡献率最显著,且四季中其它污染源也有稳定的贡献率。对PM2.5四季样品中的47种元素进行富集因子分析,结果表明,Zn、Cu、Mo、Cd、Pb、In、Sb、Tl、Bi等9种元素富集因子(EF)值大于10,元素来自于人为源,其他38种元素的EF值小于10,来自土壤或扬尘等自然源;聚类分析表明,人为源元素中In、Bi、Tl、Cd、Pb、Mo、Sb主要来自煤炭燃烧、Cu、Zn主要来源于汽车尾气。  相似文献   

12.
2013年9月20-24日,通过采集成都市无车日前后禁行区域内PM2.5样品,分析样品中主要的可溶性无机离子、碳组分和金属元素,研究无车日期间PM2.5污染特征变化并评估机动车尾气排放对成都市大气污染的影响。结果表明:在无车日期间,可溶性无机离子中二次离子NO3-、SO42-、NH4+的含量分别下降了29.2%、21.6%、20.5%;有车日期间,OC/EC的平均比值为2.64,而无车日OC/EC比值为1.95,表明减少机动车尾气排放有助于减少二次有机碳的转化;PM2.5中Pb、Cs、Ni、Cu、Zn、Cr、As富集因子大,主要来源于人为污染;Pb、Cu和Zn主要来源于机动车,无车日质量浓度分别下降3.7%、16.3%和19.4%。机动车对PM2.5中的二次离子(NO3-、SO42-、NH4+)、碳组分和重金属(Pb、Cu、Zn)均有较大贡献。因子分析表明,机动车排放源对成都市大气污染物细颗粒物PM2.5贡献量达25.8%。  相似文献   

13.
为研究南京市典型交通源冬季PM_(2.5)的污染特性,于2016年1月9日到2月4日在南京市四平路采集了大气中PM_(2.5)样品,分析了样品中的重金属元素、水溶性离子、有机碳和元素碳的浓度。结果表明,采样期间南京市大气PM_(2.5)中日平均质量浓度为85.3μg/m~3。重金属元素锌(Zn)的浓度最高,其次是铅(Pb)和锰(Mn)的元素浓度,平均浓度分别为104.72 ng/m~3、60.88 ng/m~3,再者是钡(Ba)和铜(Cu)的元素浓度,平均浓度分别为30.23 ng/m~3、45.26 ng/m~3。样品中水溶性离子的平均质量浓度水平为:NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Mg~(2+)Ca~(2+),其中NO_3~-、SO_4~(2-)和NH_4~+的质量浓度均在10μg/m~3以上,是水溶性离子的主要组分,分别占总离子浓度的37.18%、29.34%、17.42%。  相似文献   

14.
中国PM_(2.5)污染状况和污染特征的研究   总被引:10,自引:0,他引:10  
近10 余年来在中国的城市地区和清洁地区进行了PM2-5 的采集和分析,其中包括PM2-5 的质量浓度、离子和元素成分、酸度和酸化缓冲能力以及来源解析,研究结果表明,中国大部分地区PM2-5 的污染较重,不论是质量浓度,还是各种主要成分浓度,在TSP 和PM10 中都占有很高的比重,而PM2-5 的酸度也远远高于TSP 和PM10 ,特别是近年来PM2-5 污染还有相对加剧的趋势。  相似文献   

15.
为了解APEC会议期间天津市PM_(2.5)污染特征,2014年11月6日-22日在天津市环境监测中心采集PM_(2.5)样品,分析了水溶性离子、无机元素及碳组分含量。结果表明:APEC会议期间,天津市PM_(2.5)浓度水平为81μg/m3,低于会后114μg/m~3;NO_3~-、SO_4~(2-)和NH_4~+等二次离子在PM_(2.5)中所占比重由会议期间的48.12%下降为会后的42.68%,一次离子所占比重由期间的8.84%上升为会后的14.50%,NO_3~-/SO_4~(2-)比值及硫氧化率(SOR)、氮氧化率(NOR)均高于会后。总无机元素浓度及其在PM_(2.5)中的占比均明显低于会后。有机碳(OC)和元素碳(EC)的浓度及在PM_(2.5)中的占比低于会后,但OC/EC比值及二次有机碳(SOC)在OC中所占比重高于会后。说明APEC期间天津市PM_(2.5)中二次反应较为明显,机动车排放对PM_(2.5)的贡献相对突出,城市扬尘得到明显控制。  相似文献   

16.
基于2017年全年在某钢厂厂区4个特征点位进行的环境大气PM_(2.5)、PM_(10)和气象参数的在线监测数据,对一年中污染高发/非高发时段钢铁厂厂区内大气颗粒物的浓度水平、粒径分布、日均值变化趋势以及气象因素对浓度的影响进行了分析,并利用大气气团输送模拟及潜在污染源贡献(PSCF)分析探讨了厂区大气PM_(2.5)的外来输送和本地贡献情况。结果表明:2017年全年某钢厂厂区大气颗粒物以细颗粒物为主;4个站点大气PM_(2.5)日均值全年变化趋势一致,污染高发月份质量浓度均值高于非污染高发月份相应值;除2号站可能受到厂区生产活动排放的影响,PM_(2.5)浓度水平略高外,各站点相互间及与周边环境对照点的浓度保持在一致水平,亦未发现明显的污染物输出现象;冬季外来污染源输入对厂区大气PM_(2.5)浓度贡献较显著,其他季节应主要考虑本地排放影响。  相似文献   

17.
利用2015年深圳市宝安区PM_(2.5)监测数据和气象数据进行分析,得出辖区PM_(2.5)年均浓度为38μg/m3,呈夏季低冬季高特征。冬季PM_(2.5)超标天数达15 d,占总超标天数的52%。模型模拟结果表明,辖区PM_(2.5)受本地源的影响约为37%~47%,受周边区域的影响约为53%~63%。按污染源类型来分,宝安区PM_(2.5)受工业企业污染源影响较大,约为49%~59%,受机动车尾气和道路扬尘影响约为25%~35%,受裸土和施工扬尘源影响约为11%~21%。西乡、沙井、松岗子站PM_(2.5)受周边区域影响较大,福永子站PM_(2.5)受本地源影响较大。  相似文献   

18.
洪沁  常宏宏 《环境工程》2018,36(4):108-112
选取西南地区为采样点,于2015年非重污染和重污染时期对环境PM_(2.5)进行采样,并对PM_(2.5)、水溶性离子和碳质组分的污染特征进行分析。结果显示:重污染与非重污染天PM_(2.5)质量浓度分别为(204.8±47.0)μg/m~3和(66.8±23.1)μg/m~3。重污染天气下SO_4~(2-)、NO_3~-和NH_4~+浓度分别是非重污染天气下的3.5,4.2,3.4倍,SIA浓度占PM_(2.5)的比例可高达42.2%。重污染期间OC和EC浓度分别是非重污染期间的4.8,2.7倍,SOC浓度在非重污染和重污染期间分别为(3.2±1.6),(25.6±15.2)μg/m~3,OC、EC较低的相关性也反映出重污染期间碳质组分来源的复杂性。  相似文献   

19.
基于道路试验,通过车载排放测试系统研究DOC+CDPF对重型柴油车颗粒物排放的影响。研究结果显示:在原车排放中,颗粒物质量(PM)大部分是聚集态颗粒物,其占总颗粒物质量的97.5%;颗粒物数量(PN)大部分是核膜态颗粒,其占总颗粒物数量的93.8%。对于粒径分布,原车排放颗粒物数量与质量均呈对数双峰状,安装DOC+CDPF后处理装置后,粒径分布图变为三峰状。其中DOC+CDPF对聚集态颗粒质量的减排率为85%~90%,对聚集态颗粒数量、核膜态颗粒质量与数量的减排率均在90%以上。  相似文献   

20.
2014年在吉林市设立7个大气PM_(2.5)采样点,分采暖季和非采暖季分别采样分析了吉林市城区大气颗粒物污染特征和可能来源。结果表明:吉林市大气颗粒物以PM_(2.5)为主,PM_(2.5)年均值65μg/m3,超过国家二级标准限值86%,PM_(2.5)/PM10的年平均值为61%;PM_(2.5)中,休闲生活区各个时间段金属元素浓度相对较低,工业混合区浓度较高;非金属离子SO2-4、NH+4、NO-3、Cl-是PM_(2.5)水溶性离子的主要成份,其和占PM_(2.5)质量的13.31%,在采暖期浓度质量全部高于非采暖期;采暖期OC和EC来源基本相同,来源于机动车尾气、燃煤和生物质燃烧等,在非采暖期OC和EC来源差异性较大,主要来源于机动车尾气和工业燃煤等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号