首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2H nuclear magnetic resonance (NMR) of Acholesplasma laidlawii membranes grown on a medium supplemented with perdeuterated palmitic acid shows that at 42°C or above, the membrane lipids are entirely in a fluid state, exhibiting the characteristic ‘plateau’ in the variation of deuterium quadrupolar splitting with chain position. Between 42 and 34°C there is a well-defined gel-to-fluid phase transition encompassing the growth temperature of 37°C, and at lower temperatures the membranes are in a highly ordered gel state. The 2H-NMR spectra of the gel phase membranes are similar to those of multilamellar dispersions of chain perdeuterated dipalmitoyl phosphatidylcholine (Davis, J.H. (1979) Biophys. J. 27, 339) as are the temperature dependences of the spectra and their moments. The incorporation of large amounts of cholesterol into the membrane removes the gel to fluid phase transition. Between 20 and 42°C, the position dependence of the orientational order of the hydrocarbon chains of the membranes is similar to that of the fluid phase of the membranes without cholesterol, i.e., they exhibit the plateau in the deuterium quadrupolar splittings. However, the cholesterol-containing membranes have a higher average order, with the increases in order being greater for positions near the carbonyl group of the acyl chains. Below 20°C the 2H spectra of the membranes containing cholesterol change dramatically in a fashion suggestive of complex motional and/or phase behaviour.  相似文献   

2.
The phase transition of a complex, biological membrane was studied in relation to two variables: high pressure and the alcohols, pentanol and benzyl alcohol, in order to determine whether earlier studies of defined phospholipid bilayers may be applied to natural membranes. The isolated membrane of A choleplasma laidlawii was used and three independent methods were chosen to detect the transition; optical transmission (giving Tt, an index of the end-of-melting temperature); fluorescence polarisation (giving Tp, the temperature midway through the change in polarisation which characterises the transition) and differential thermal analysis giving a record of the temperature range occupied by the endothermic process. Pressure increased Tt by 0.017 K·atm−1 and Tp by 0.016 K·atm−1, consistent with dT/dP = T·ΔV/ΔH. Pentanol (and benzyl alcohol) lowered Tt, Tp and the temperature of the endotherm seen with differential thermal analysis. Thus the membrane transition responds to pressure and alcohols in agreement with thermodynamic theory.  相似文献   

3.
The low level of endogenous fatty acid synthesis in Acholeplasma laidlawii A strain EF22 was found to be caused by a deficiency of pantetheine in the lipid-depleted growth medium. By supplementing the oleic acid-containing medium with increasing concentrations of pantetheine, saturated fatty acid synthesis was stimulated (having an apparent Km of 5 μM for pantetheine) and the incorporation of endogenously synthesized fatty acids in membrane lipids increased markedly. Furthermore, carotenoid biosynthesis was stimulated. Exogenous palmitic acid was found to inhibit partially the endogenous fatty acid synthesis. A gradual stimulation of fatty acid synthesis was accompanied by a linear increase in the molar proportion between the two dominating membrane glucolipids, monoglucosyldiacylglycerol and diglucosyldiacylglycerol. The total amount of charged membrane lipids decreased upon increasing the degree of fatty acid saturation. These regulations are discussed in terms of membrane stability, and influence of membrane molecular ordering and surface charge density on lipid polar head group synthesis.  相似文献   

4.
It may be easier to renature SDS-denatured hydrophobic proteins than to renature SDS-denatured water-soluble proteins. This paper presents some support for this hypothesis in the form of literature reports and an experiment of our own with an intrinsic membrane protein (a phosphatase from Acholeplasma laidlawii), that could be completely renatured, to judge from the restored activity, which was equal to (or higher than) that of the untreated enzyme. If this hypothesis is correct it might be possible to devise general methods to reverse the SDS denaturation of hydrophobic membrane proteins. This would be a breakthrough in the purification of at least some membrane proteins, because the high-resolving polyacrylamide gel electrophoresis in SDS could then be used to prepare membrane proteins in a native state. The method used for the renaturation of the SDS-denatured, entirely inactive, phosphatase comprised removal of SDS with the aid of conventional dialysis against a buffer containing the neutral, very efficient and non ultraviolet light-absorbing detergent G3707. For renaturation of the enzyme following an SDS-electrophoresis in polyacrylamide the gel was immersed in the same buffer for several hours; by staining for phosphatase the enzyme could easily be localized in the gel in the form of a yellow band, coinciding with a protein zone.  相似文献   

5.
The electrical properties of model membranes are altered during stretching or pressure pulses. We have used a mechanico-electric transduction model to interpret the temperature dependence of capacitance changes produced in oxidized cholesterol membranes during mechanical oscillation. The relative contribution of the torus and bilayer portions of the membrane to the capacitance change is identified. The difference in elasticity between the bilayer and torus decreases rapidly with decreasing temperature and ultimately the torus becomes as solid as the bilayer portion of the model membrane.  相似文献   

6.
The membrane composition and lipid physical properties have been systematically investigated as a function of fatty acid composition for a series of Acholeplasma laidlawii B membrane preparations made homogeneous in various fatty acids by growing cells on single fatty acids and avidin, a potent fatty acid synthetic inhibitor. The membrane protein molecular weight distribution is essentially constant as a function of fatty acid composition, but the lipid/protein ratio varies over a 2-fold range when different fatty acid growth supplements are used. The membrane lipid head-group composition varies somewhat under these conditions, particularly in the ratio of the two major neutral glycolipids. Differential thermal analytical investigations of the thermotropic phase transitions of various combinations of membrane components suggest that these compositional changes are unlikely to result in qualitative changes in the nature of lipid-protein or lipid-lipid interactions, although lesser changes of a quantitative nature probably do occur. The total lipids of membranes made homogeneous in their lipid fatty acyl chain composition exhibit sharper than normal gel-to-liquid-crystalline phase transitions of which midpoint temperatures correlate very well with the phase transition temperatures of synthetic hydrated phosphatidylcholines with like acyl chains. Our results indicate that using avidin and suitable fatty acids to grow A. laidlawii B, it is possible to manipulate the position and the sharpness of the membrane lipid phase transition widely and independently without causing major modifications in other aspects of the membrane composition. This fact makes the fatty acid-homogeneous A. laidlawii B membrane a very useful biological membrane preparation in which to study lipid physical properties and their functional consequences.  相似文献   

7.
8.
Myristic acid specifically deuterated at several positions along the acyl chain was biosynthetically incorporated into the membrane lipids of Acholeplasma laidlawii B to the level of ?90%. 2H-NMR was used to study the molecular order and lipid phase composition of the membranes as a function of temperature. Isolated membranes and intact cells give rise to similar 2H spectra. Below 25°C the spectra exhibit a broad gel phase component which at 0°C reaches the rigid limit value expected for an immobilized methylene group. Spectral moments were used to determine the relative amounts of gel and liquid crystalline phase lipids throughout the gel-liquid crystal phase transition. The results indicate that at the growth temperature (37 or 30°C) the A. laidlawii B membrane lipids are ~85–90% in the gel state, and that protein has little effect on lipid order of the liquid crystalline lipid, but leads to an increase in the linewidth by approx. 20%.  相似文献   

9.
The exchange of cholesterol between [14C]cholesterol-labeled Mycoplasma gallisepticum cells and an excess of sonicated egg phosphatidylcholine/cholesterol vesicles (molar ratio of 0.9) was measured. More than 90% of the radioactive cholesterol underwent transfer from intact cells to the vesicles. The kinetics of the transfer was biphasic. About 50% of the radioactive cholesterol was exchanged with a half-time of about 4 h. The residual was exchanged at a slower rate with a half-time of about 9 h at 37°C. Bovine serum albumin had a pronounced effect in enhancing both the fast and slow rates of cholesterol exchange, but did not affect the pool sizes significantly. The half-time for equilibration of the two pools in the presence of 2% albumin, calculated using a reversible two-pool method of analysis, was 6.2 h. The effect of albumin was also obtained with isolated membrane preparations and with cells treated with growth inhibitors, suggesting that this effect is independent of albumin preservation of cell viability. The rate enhancement of albumin was concentration dependent with maximal effects observed with 2%, where the rates of exchange of both the rapidly and slowly exchanging pools were twice as fast. The mechanism by which albumin may affect the exchange rates is discussed.  相似文献   

10.
11.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15°C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37°C membranes, while 15°C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15°C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15°C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37°C, but only 50% at 15°C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15°C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

12.
Growth of a choline requiring auxotroph of Neurospora crassa on medium lacking exogenous choline produces large changes in the levels of phosphatidylethanolamine and phosphatidylcholine. Whole cell fatty acid distributions were found to vary widely between different phospholipid species of normally growing, choline-supplemented cultures with phosphatidylcholine showing the highest levels of unsaturation and anionic phospholipids and cardiolipin having the lowest. In these lipids, choline deprivation produced little change in fatty acid profiles of phosphatidylethanolamine, whereas changes in fatty acids of phosphatidylcholine and acidic phospholipids resulted in increased levels of unsaturation at both growth temperatures. Microsomal phospholipids also showed fatty acid variability with sharp decreases in phosphatidylcholine unsaturates and increases in acidic phospholipid unsaturated fatty acids at low growth temperatures. Fluorescence polarization of 1,6-diphenylhexatriene in vesicles formed from total cellular and microsomal lipids showed that choline deprivation produces changes in thermotropic properties in the lipids in deprived cultures at either growth temperature. The effective differences in fluorescence polarization between choline-deprived and supplemented cultures grown at a given temperature were found to be comparable to those produced by temperature acclimation in normally growing cultures over a temperature range of 22 K.  相似文献   

13.
A strongly immobilized signal from fatty acid spin labels was observed in human erythrocytes treated with oxidizing agents such as glutaraldehyde, hydrogen peroxide, phenylhydrazine and copper-ortho-phenanthroline. This signal was also observed in freshly prepared ghosts treated with potassium superoxide and in old erythrocyte ghosts. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these samples demonstrated the diffuse, nondiscrete bands of high molecular weight due to the cross-linking of membrane proteins. The temperature and pH dependences of the outer hyperfine splitting of this signal were very similar to those of bovine serum albumin. We propose that the strongly immobilized signal reflects the interaction of the lipids with the cross-linked products of membrane proteins.  相似文献   

14.
The characteristics of 3H-labeled imipramine and 3H-labeled paroxetine binding to human platelet membranes were determined at various temperatures between 0 and 37°C. Both paroxetine and imipramine probably bind to the same molecular complex in the platelet membrane, but the binding characteristics are different for the two molecules. The dissociation constant (Kd) for imipramine increases from 0.3 nM to 7.0 nM with increasing incubation temperature in a continuous way, whereas Kd for paroxetine is almost constant, about 0.05 nM, between 0 and 19°C, and first begins to increase from 0.06 nM to 0.16 nM between 20 and 37°C. This suggests that the binding of paroxetine to the binding site induces a conformational change in the molecular complex of the binding site, whereas the binding of imipramine takes place without conformational changes in the binding site.  相似文献   

15.
Changes in the relative content of pigment-protein complexes, RC-B880 and B800-850, were studied in membranes of Rhodobacter sphaeroides forma sp. denitrificans cultured under various anaerobic conditions. The content of each pigment-protein complex was determined by the decomposition of the absorption spectra of membranes in the near-infrared region into the spectra of RC-B880 and B800-850. The standard spectrum of each complex in the membranes was obtained using two absorption spectra of membranes with different ratios of the complexes by eliminating the spectrum of first one than the other complex. Spectra composed from the two standard spectra were in good agreement with original membrane spectra after subtraction of the contribution of scattering in various membrane samples. Bacteriochlorophyll (BChl) content in the membrane was dependent on the light intensity during growth. The relation between the total BChl content in the membrane and BChl content in the RC-B880 and B800-850 complex was linear above 15 nmol BChl per mg membrane protein, regardless of the culturel conditions, photosynthetic or photo-denitrifying. The linear relationship reached a point where all BChl molecules were contained in RC-B880 at 13 nmol BChl per mg membrane protein. This means that only RC-B880 would be synthesized below the threshold, and above the threshold additional BChl was distributed between RC-B880 and B800-850 in a constant ratio (1:5.7). The results suggest that the syntheses of B800-850 and RC-B880 are not regulated independently.  相似文献   

16.
Treatment of Anabaena variabilis membranes with lauryldimethylamine N-oxide yielded two fractions of pigment-protein complexes which were separable by gel filtration on Sepharose 6B. A green fraction was characterized which had a maximum of the chlorophyll long-wave absorption band at 678 nm and a small amount of carotenoid. In this fraction, Photosystem I activity was higher than in another (brownish-green) fraction which had a maximum of the chlorophyll absorption band at 673 nm and which was enriched in carotenoids. Similarly to isolated membranes, proteoliposomes containing pigment-protein complexes took up tetraphenylborate anions and tetraphenylphosphonium cations and were found to be capable of light-dependent membrane potential generation, when associated with a planar phospholipid membrane in the presence of reduced phenazine methosulfate upon illumination. The spatial arrangement of the pigment-protein complexes in the native and artificial membranes is discussed.  相似文献   

17.
The transfer of non-esterified cholesterol to rat-liver microsomal fraction resulted in a considerable decrease in the activity of 5′-nucleotidase and in changes in the characteristics of the Arrhenius plots of the enzyme. The decrease in the activity of 5′-nucleotidase and the increase in the concentration of non-esterified cholesterol in the serum-treated preparations were serum-concentration-dependent and incubation-time-dependent. The enzyme in serum-treated preparations with high non-esterified cholesterol content showed Arrhenius plots with a constant activation energy between 37 and 19°C, whereas the enzyme in the non-treated microsomal fraction or the lipoprotein-deficient serum-treated preparations showed a break at about 28°C, with activation energies higher below and lower above the break. These changes in the temperature-induced kinetics are consistent with an increase in the concentration of non-esterified cholesterol in the plasma membrane vesicles of the serum-treated preparations. The Arrhenius plots of 5′-nucleotidase in liver microsomal fraction from rats fed cholesterol-supplemented diet showed constant activation energy between 37 and 19°C and had similar characteristics with the plots for 5′-nucleotidase in serum-treated preparations. Since the changes in the characteristics of Arrhenius plots of the enzyme in microsomal fraction from rats that had been denied food for 36 h were in the opposite direction to those produced by feeding cholesterol, these results are consistent with a lower concentration of non-esterified cholesterol in hepatic plasma membranes from fasted rats relative to that in plasma membranes from fed rats. The isolation of a plasma membrane preparation with negligible contamination of endoplasmic reticular membranes from rats fed the standard or cholesterol-supplemented diet and from fasted rats showed that the ratio of cholesterol to phospholipid has increased in the preparation from rats fed cholesterol and decreased in that from rats that had been denied food relative to the ratio in the preparation from rats fed the standard diet. The Arrhenius plots of 5′-nucleotidase in these preparations showed characteristics similar to the corresponding plots of the enzyme in the microsomal fraction from the rats in the three experimental conditions.  相似文献   

18.
Protein P from Pseudomonas aeruginosa outer membrane was reconstituted in lipid bilayer membranes from diphytanoylphosphatidylcholine. The reconstitution resulted in the formation of anion-selective channels with a conductance of 160 pS for 0.1 M chloride solution. The channels were at least 100-times more selective for anions than for cations as judged from zero-current membrane potentials. The single-channel conductance was dependent on the size of the different anions and saturated at higher salt concentrations suggesting single ion occupancy of the protein P channel.  相似文献   

19.
The correlation between the fluidity of phospholipids and their fatty acid composition was studied by spin label technique and gas-liquid chromatography for three major phospholipid species in Tetrahymena pyriformis during temperature acclimation. The fluidity of 2-aminoethylphosphonolipid increased within the first 10 h of the cold-acclimation when the content of γ-linolenic acid in 2-aminoethylphosphonolipid was highest, and it then decreased up to 24 h. On the other hand, the fluidities of phosphatidylethanolamine and phosphatidylcholine showed a gradual decrease up to 24 h after the temperature shift, although γ-linolenic acid contents were highest at 10 h after the temperature shift. Thus the fluidity changes of these two phospholipids were interpreted as resulting from the altered content of other fatty acids in addition to γ-linolenic acid, since the γ-linolenic acid content was smaller than that of 2-aminoethylphosphonolipid. The results suggest that the content of γ-linolenic acid in 2-aminoethylphosphonolipid plays a role in regulating the thermal adaptation process.  相似文献   

20.
Helwig Reidl  Jochen R. Golecki  Gerhart Drews   《BBA》1983,725(3):455-463
Cells of Rhodopseudomonas capsulata were grown in a turbido-stat and adapted to high (1400 W/m2) or low (40 W/m2) light intensities. In high-light-grown cells the specific BChl content was about 10-times lower, the number of intracytoplasmatic membrane vesicles smaller by a factor of about 20, the photosynthetic unit smaller by a factor of 1.9 and the reaction center content about 5-times lower than in low-light-grown cells. However, the photophosphorylation rate per reaction center under saturating light was higher in high-light-grown cells by a factor of 7.7, apparently compensating the lower amount of reaction centers. Adaptation of the cells to different irradiances not only seems to comprise a variation of the size and composition of the antennae, but also a change in the affinity of the photosynthetic system to light, as concluded from saturation curves obtained from the two adaptation stages of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号