首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas diffusion layers (GDL) play multi-roles in proton exchange membrane fuel cells, including gas-water transport, thermal-electron conduction and mechanical support. Mechanical strength and transport properties are essential for GDLs. In this work, high-density (paper-type) and low density (felt-type) GDLs are scanned and reconstructed using X-ray computed tomography. Porosities under different compression ratios are compared and discussed. Effective diffusivity and liquid water permeability are calculated using pore-scale modeling and lattice Boltzmann method. Mechanical strength, anisotropic thermal-electrical resistivity for two types of GDLs are obtained using compression tests and thermal-electrical conductivity measurements. Results show that the porosity, diffusivity, permeability, and through-plane thermal-electrical conductivity of felt-type GDL are significantly higher than that of paper-type GDL owing to the higher porosity and fiber-clusters oriented along the through-plane direction. The in-plane electrical resistivity of paper-type GDL is lower than that of felt-type GDL. The mechanical strength of felt-type GDL is much lower, but the fibers of paper-type GDL are more easily to be broken because of its lower elasticity. The results obtained may guide microstructure optimization and performance improvement of GDLs.  相似文献   

2.
This paper studied the breakthrough pressure for liquid water to penetrate the gas diffusion layer (GDL) of a pro- ton exchange membrane fuel cell (PEMFC). An ex-situ testing was conducted on a transparent test cell to visu- alize the water droplet formation and detachment on the surface of different types of GDLs through a CCD cam- era. The breakthrough pressure, at which the liquid water penetrates the GDL and starts to form a droplet, was measured. The breakthrough pressure was found to be different for the GDLs with different porosities and thick- nesses. The equilibrium pressure, which is defined as the minimum pressure required maintaining a constant flow through the GDL, was also recorded. The equilibrium pressure was found to be much lower than the breakthrough pressure for the same type of GDL. A pore network model was modified to further study the relationship between the breakthrough pressure and the GDL properties and thicknesses. The breakthrough pressure increases for the thick GDL with smaller micro-pore size.  相似文献   

3.
Gas diffusion layer (GDL) is a porous medium placed between the flow field and the catalyst layer in a proton exchange membrane fuel cell (PEMFC), and experiences electrochemical aging and mechanical stresses during usage. In the present work carbon cloth and carbon paper, two commonly used GDLs in PEMFC, are electrochemically aged in a simulated PEMFC environment. The results indicate that carbon paper is less prone to oxidation when compared to carbon cloth, which can be attributed to higher degree of graphitization of carbon fibers in the paper. However, carbon paper suffers greater loss of structural stability due to the adverse effects of aging on the fiber matrix interface. Increased weakening of paper when compared to cloth, after electrochemical aging, results in higher residual strain when subjected to cyclic compression and an increased intrusion of paper into the flow field channel when compared to cloth GDL.  相似文献   

4.
Proton exchange membrane (PEM) fuel cells are considered to be promising alternatives to natural resources for generating electricity and various other powers. Optimal water management in the gas diffusion layer (GDL) is critical to the high performance of fuel cells. The basic function of the GDL includes transporting the reactant gas from flow channels to the catalyst effectively, draining liquid water from the catalyst layer to the flow channels, and conducting electrons with low humidity. In this study, poly-acrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to their stabilization at atmospheric pressure at 280 °C for 1 h and carbonization at 850 °C for one more hour. The surface hydrophobicity of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs showed better results than the conventional ones. Water condensation tests (superhydrophobic and hydrophilic) on the surfaces of the GDLs showed a crucial step towards improved water management in fuel cells. This study may open up new possibilities for developing high-performing GDL materials for future PEM fuel cell applications.  相似文献   

5.
The cross flow in the under‐land gas diffusion layer (GDL) between 2 adjacent channels plays an important role on water transport in proton exchange membrane fuel cell. A 3‐dimensional (3D) two‐phase model that is based on volume of fluid is developed to study the liquid water‐air cross flow within the GDL between 2 adjacent channels. By considering the detailed GDL microstructures, various types of air‐water cross flows are investigated by 3D numerical simulation. Liquid water at 4 locations is studied, including droplets at the GDL surface and liquid at the GDL‐catalyst layer interface. It is found that the water droplet at the higher‐pressure channel corner is easier to be removed by cross flow compared with droplets at other locations. Large pressure difference Δp facilitates the faster water removal from the higher‐pressure channel. The contact angle of the GDL fiber is the key parameter that determines the cross flow of the droplet in the higher‐pressure channel. It is observed that the droplet in the higher‐pressure channel is difficult to flow through the hydrophobic GDL. Numerical simulations are also performed to investigate the water emerging process from different pores of the GDL bottom. It is found that the amount of liquid water removed by cross flow mainly depends on the pore's location, and the water under the land is removed entirely into the lower‐pressure channel by cross flow.  相似文献   

6.
Water transport through gas diffusion layer of proton exchange membrane fuels cells is investigated experimentally. A filtration cell is designed and the permeation threshold and the apparent water permeability of several carbon papers are investigated. Similar carbon paper with different thicknesses and different Teflon loadings are tested to study the effects of geometrical and surface properties on the water transport. Permeation threshold increases with both GDL thickness and Teflon loading. In addition, a hysteresis effect exists in GDLs and the permeation threshold reduces as the samples are retested. Moreover, several compressed GDLs are tested and the results show that compression does not affect the breakthrough pressure significantly. The measured values of apparent permeability indicate that the majority of pores in GDLs are not filled with water and the reactant access to the catalyst layer is not hindered.  相似文献   

7.
In this paper, the effects of microporous layer (MPL) addition and polytetrafluoroethylene (PTFE) loading of gas diffusion layers (GDLs) on the overall performance of the proton exchange membrane fuel cell have been investigated. The focus was on fuel cells that operate at relatively low current densities where the power demand is low, but the efficiency is of concern. The results show that, in the activation loss‐controlled region, the performance of the fuel cell operating with moderately PTFE‐treated carbon substrates is superior over that operating with coated GDLs. This is due to the addition of the MPL which lengthens the diffusion paths and significantly reduces the mass transport properties. Conversely, in the ohmic loss‐controlled region, the fuel cell with coated GDLs performs better than those with carbon substrates. This is explained by the enhanced contact of the GDL with the adjacent components after the MPL addition, which outweighs the negative effects associated with the activation loss‐controlled region. Also, it was found that the fuel cell performance becomes lower if the GDL is treated with a relatively high PTFE loading in either the carbon substrate (due to the decrease in the porosity of the GDL) or the MPL. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, advanced x-ray radiographic techniques available at the Canadian Light Source (CLS) were utilized to study water droplet dynamics in a serpentine flow channel mimicking a proton exchange membrane fuel cell (PEMFC). High spatial and temporal resolution coupled with high energy photons of an x-ray beam provided high-resolution images of water droplets. This technique solved the problem caused by the opaqueness of fuel cell materials including the gas diffusion layer by providing a unique way to study water droplet dynamics at different operating conditions. From the captured images, droplet emergence and formation on porous gas diffusion layers (GDLs) were analyzed. Three commercially available GDLs (Sigracet AA, Sigracet BA, and Sigracet BC) were used and droplet detachment height was found to decrease in the following order AA < BA < BC under the same flow condition. Increasing the superficial gas velocity was found to decrease the droplet detachment height for all GDLs tested. Average droplet cycle for various operating conditions was obtained. It was found that humidified air did not show a difference in droplet dimensions at detachment compared to dry air used at the inlet gas. However, it did show an impact on droplet cycle time, which might be due to condensation.  相似文献   

9.
Fuel cell performance of membrane electrode assemblies (MEAs) prepared from poly(tetrafluoroethylene)/Nafion/silicate (PNS) membrane and Nafion-112 membrane were investigated. Due to the low conductivity of PTFE and silicate, PNS had a higher proton resistance than Nafion-112. However, in this work we show that PNS performs better than Nafion-112 for a high current density operation with a low inlet gas humidity. As the PEMFCs were operated at with 100% RH, the results showed the maximum power density (PDmax) of PNS was: at with both H2 and O2 flow rates of 300 ml/min, and at with H2 flow rate of 360 ml/min and O2 flow rate of 600 ml/min, which were much higher than the at of Nafion-112 with both H2 and O2 flow rates of 300 ml/min. The PDmax of PNS was: , , and at as the operating temperature and inlet gas humidity were set at with 67.7% RH, with 46.8% RH, and with 33.1% RH, respectively. However, no output power was detected for Nafion-112 MEA when the cell was operated at a temperature higher than and an inlet gas humidity lower than 67.7% RH. The high PEMFC performance of PNS at high current density and low humidity is attributed to the presence of silicate in the PNS membrane, which enhances water uptake and reduces electro-osmosis water loss at a high current density.  相似文献   

10.
Prompted by our earlier study that fumed silica on gas diffusion layer (GDL) favored a performance improvement of the single fuel cell at lower RH conditions, the present study has been carried out with inorganic oxides in the nanoscale such as TiO2, Al2O3, commercially available mixed oxides, hydrophilic silica and aerosil silica. The structure of each of the oxide coating on the GDL surface has resulted in refinement with graded pore dimension as seen from the Hg porosimetry data. The fuel cell evaluation at various RH conditions (50–100%) revealed that the performance of all the inorganic oxides loaded GDL is very high compared to that of pristine GDL. The results confirm our earlier observation that inorganic oxides on GDL bring about structural refinement favorable for the transport of gases, and their water retaining capacity enable a high performance of the fuel cell even at low RH conditions.  相似文献   

11.
Intrusion of the gas diffusion layer (GDL) into gas channels due to fuel cell compression has a major impact on the gas flow distribution, fuel cell performance and durability. In this work, the effect of compression resulting in GDL intrusion in individual parallel PEMFC channels is investigated. The intrusion is determined using two methods: an optical measurement in both the in-plane and through-plane directions of GDL, as well as an analytical fluid flow model based on individual channel flow rate measurements. The intrusion measurements and estimates obtained from these methods agree well with each other. An uneven distribution of GDL intrusion into individual parallel channels is observed. A non-uniform compression force distribution derived from the clamping bolts causes a higher intrusion in the end channels. The heterogeneous GDL structure and physical properties may also contribute to the uneven GDL intrusion. As a result of uneven intrusion distribution, severe flow maldistribution and increased pressure drop have been observed. The intrusion data can be further used to determine the mechanical properties of GDL materials. Using the finite element analysis software program ANSYS, the Young's modulus of the GDL from these measurements is estimated to be 30.9 MPa.  相似文献   

12.
A new analytical approach is proposed for evaluating the in-plane permeability of gas diffusion layers (GDLs) of proton exchange membrane fuel cells. In this approach, the microstructure of carbon papers is modeled as a combination of equally-sized, equally-spaced fibers parallel and perpendicular to the flow direction. The permeability of the carbon paper is then estimated by a blend of the permeability of the two groups. Several blending techniques are investigated to find an optimum blend through comparisons with experimental data for GDLs. The proposed model captures the trends of experimental data over the entire range of GDL porosity. In addition, a compact relationship is reported that predicts the in-plane permeability of GDL as a function of porosity and the fiber diameter. A blending technique is also successfully adopted to report a closed-form relationship for in-plane permeability of three-directional fibrous materials.  相似文献   

13.
Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack® carbon) and carbon nano-fibers. The GDL samples’ characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.  相似文献   

14.
Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth & Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 °C using H2 and air at 50% RH, compared to all other compositions.  相似文献   

15.
Water management in a proton exchange membrane (PEM) fuel cell is one of the critical issues for improving fuel cell performance and durability, and water transport across the gas diffusion layer plays a key role in PEM fuel cell water management. In this work, we investigated the effects of polytetrafluoroethylene (PTFE) content and the application of a micro-porous layer (MPL) in the gas diffusion layer (GDL) on the water transport rate across the GDL. The results show that both PTFE and the MPL play a similar role of restraining water transport. The effects of different carbon loadings in the MPL on water transport were also investigated. The results demonstrate that the higher the carbon loading in the MPL, the more it reduces the water transport rate. Using the given cell hardware and components, the optimized operation conditions can be obtained based on a water balance analysis.  相似文献   

16.
The electrospray deposition method has been used for preparation of catalyst layers for proton exchange membrane fuel cells (PEMFC) on Nafion membrane. Deposition of Pt/C + ionomer suspensions on Nafion 212 gives rise to layers with a globular morphology, in contrast with the dendritic growth observed for the same layers when deposited on the gas diffusion layer, GDL (microporous carbon black layer on carbon cloth) or on metallic Al foils. Such a change is discussed in the light of the influence of the Nafion substrate on the electrospray deposition process. Nafion, which is a proton conductor and electronic insulator, gives rise to the discharge of particles through proton release and transport towards the counter electrode, compared with the direct electron transfer that takes place when depositing on an electronic conductor. There is also a change in the electric field distribution in the needle to counter-electrode gap due to the presence of Nafion, which may alter conditions for the electrospray effect. If discharging of particles is slow enough, for instances with a low membrane protonic conductivity, the Nafion substrate may be charged positively yielding a change in the electric field profile and, with it, in the properties of the film. Single cell characterization is carried out with Nafion 212 membranes catalyzed by electrospray on the cathode side. It is shown that the internal resistance of the cell decreases with on-membrane deposited cathodic catalyst layers, with respect to the same layers deposited on GDL, giving rise to a considerable improvement in cell performance. The lower internal resistance is due to higher proton conductivity at the catalyst layer-membrane interface resulting from on-membrane deposition. On the other hand, electroactive area and catalyst utilization appear little modified by on-membrane deposition, compared with on-GDL deposition.  相似文献   

17.
The dynamic behavior of liquid water transport through the gas diffusion layer (GDL) of the proton exchange membrane fuel cell is studied with an ex-situ approach. The liquid water breakthrough pressure is measured in the region between the capillary fingering and the stable displacement on the drainage phase diagram. The variables studied are GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. The liquid water breakthrough pressure is observed to increase with GDL thickness, GDL compression, and inclusion of the MPL. Furthermore, it has been observed that applying some amount of PTFE to an untreated GDL increases the breakthrough pressure but increasing the amount of PTFE content within the GDL shows minimal impact on the breakthrough pressure. For instance, the mean breakthrough pressures that have been measured for TGP-060 and for untreated (0 wt.% PTFE), 10 wt.% PTFE, and 27 wt.% PTFE were 3589 Pa, 5108 Pa, and 5284 Pa, respectively.  相似文献   

18.
In the present study, a series of highly efficient single-layer gas diffusion layers (SL-GDLs) was successfully prepared by the addition of a vapor grown carbon nanofiber (VGCF) in the carbon black/poly(tetrafluoroethylene) composite-based SL-GDL through a simple and inexpensive process. The scanning electron micrographs of the as-prepared VGCF-containing SL-GDLs (SL-GDL-CFs) showed that the GDLs had a microporous layer (MPL)-like structure, while the wire-like VGCFs were well dispersed and crossed among the carbon black particles in the SL-GDL matrix. Utilization of the SL-GDL-CFs for MEA fabrication was also done by direct coating with the catalyst layer. Due to the presence of VGCFs, the properties of the SL-GDL-CFs, including electronic resistivity, mechanical characteristic, gas permeability, and water repellency, varied with the VGCF content, with the overall effect beneficial to the performance of the proton exchange membrane fuel cell (PEMFC). The best performances obtained from the PEMFC with VGCFs at 15 wt.% was approximately 63% higher than those without VGCFs, and about 85% as efficient as ELAT GDL, a commercial dual-layer GDL, for both the H2/O2 and H2/air systems.  相似文献   

19.
This study presents an analysis of water permeation of a polytetrafluoroethylene (PTFE)-coated gas diffusion layer (GDL) to determine the influence of hydrophobic treatment on the GDL for diagnosis of water flooding. It is found that the behaviour of water drainage is controlled by the pore configuration instead of the hydrophobicity in GDL. Better water drainage is achieved by the action of the Teflon coating in modulating the GDL pore configuration to give both a larger average pore size and a wider distribution of pore size. The results show that water penetration through the GDL must overcome a threshold surface tension defined by the largest pore range. A 30 wt.% PTFE coating of a GDL is shown to generate a satisfactory pore configuration, explaining the improved cell polarization performance with a lower driven pressure (∼1.91 kPa) and a higher rate of water drainage.  相似文献   

20.
Gas diffusion layer(GDL) plays a great important role in proton exchange membrane fuel cell(PEMFC).Water transport mechanism in GDL is still not clear.In the present study,an ex-situ transparent setup is built to visualize the transport phenomena and to measure the threshold pressure of water in GDL at different temperatures.It is found that the relationship between the breakthrough pressure and the temperature is nearly linear(i.e.the pressure decreases linearly with the increase of temperature).To avoid the problems faced by the continuum models,the pore network model is developed to simulate the liquid water transport through the carbon paper.A uniform pressure boundary condition is used in simulation and the results are similar to the ones obtained in the experiment.The reason is that the contact angle and surface tension coefficient of water in GDLs change accordingly with the change of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号