首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
The simplest amine-borane, considered as solid hydrogen storage material, ammonia-borane (H3NBH3) can release hydrogen gas upon catalytic hydrolysis under mild conditions. Herein, we report the preparation of a novel catalyst, water dispersible laurate-stabilized ruthenium(0) nanoclusters from the dimethylamine-borane reduction of ruthenium(III) chloride in sodium laurate solution at room temperature. The ruthenium nanoclusters in average size of 2.6 ± 1.2 nm were isolated from the solution and well characterized by using TEM, XPS, FTIR, and UV–visible electronic absorption spectroscopy. The water dispersible laurate-stabilized ruthenium(0) nanoclusters were found to be highly active and long-live catalyst with a TOF of 75 mol H2/mol Ru·min and TTO value of 5900 mol H2/mol Ru in the hydrolysis of ammonia-borane at 25.0 ± 0.1 °C.  相似文献   

2.
Herein we report the preparation, characterization and catalytic use of hydroxyapatite-supported palladium(0) nanoclusters in the hydrolysis of ammonia-borane. Palladium(0) nanoclusters were formed in situ from the reduction of palladium(II) ion exchanged hydroxyapatite during the hydrolysis of ammonia-borane and supported on hydroxyapatite. The hydroxyapatite-supported palladium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by using a combination of advanced analytical techniques. They are isolable, redispersible and reusable as an active catalyst in the hydrolysis of ammonia-borane even at low concentration and temperature. They provide a maximum hydrogen generation rate of ∼1425 mL H2 min−1 (g Pd)−1 and 12300 turnovers in the hydrolysis of ammonia-borane at 25 ± 0.1 °C before deactivation. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 54.8 ± 2.2 kJ/mol) and the effect of catalyst concentration on the rate for the catalytic hydrolysis of ammonia-borane.  相似文献   

3.
Zeolite confined palladium(0) nanoclusters were prepared by a two step procedure: incorporation of Pd2+ ions into the zeolite-Y by ion-exchange followed by the reduction of Pd2+ ions in the supercages of zeolite-Y with sodium borohydride at room temperature. Zeolite confined palladium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by ICP-OES, XRD, HRTEM, SEM, X-ray photoelectron spectroscopy and N2 adsorption technique. These nanoclusters are isolable, redispersible and reusable as an active catalyst in the hydrolysis of ammonia-borane solution. Zeolite confined palladium(0) nanoclusters provide 15,600 turnovers in hydrogen generation from the hydrolysis of ammonia-borane at 25.0 ± 0.1 °C.  相似文献   

4.
Herein we report the development of a cost-effective nanocluster catalyst for the hydrolytic dehydrogenation of ammonia-borane which is considered to be one among the new hydrogen storage materials. Zeolite confined copper(0) nanoclusters were prepared by the ion-exchange of Cu2+ ions with the extra framework Na+ ions in zeolite-Y followed by reduction of the Cu2+ ions within the cavities of zeolite with sodium borohydride in aqueous solution and characterized by HR-TEM, XRD, XPS, SEM, EDX, ICP-OES, Raman spectroscopy and N2 adsorption–desorption technique. Zeolite confined copper(0) nanoclusters are found to be active catalysts in the hydrolysis of ammonia-borane even at low temperatures (≤15 °C) and stable enough for being isolated as solid materials. They provide 1300 turnovers in hydrogen generation from the hydrolysis of ammonia–borane at room temperature. The average value of turnover frequency is 46.5 h−1 for the same reaction. More importantly, zeolite confined copper(0) nanoclusters were found to be isolable, bottleable and reusable catalysts in the hydrolytic dehydrogenation of ammonia-borane; even at fifth run the complete release of hydrogen from the hydrolysis of ammonia-borane at room temperature is achieved. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy and the effect of catalyst concentration on the rate for the catalytic hydrolysis of ammonia–borane.  相似文献   

5.
Previously being used as highly active catalyst in the hydrolysis of sodium borohydride, intrazeolite cobalt(0) nanoclusters were also employed as catalyst in the hydrolysis of ammonia-borane (H3NBH3). Intrazeolite cobalt(0) nanoclusters were found to be active catalyst in this hydrolysis reaction of ammonia-borane providing 5450 total turnovers at room temperature before deactivation. The results of the kinetic study shows that the catalytic hydrolysis of AB is first order with respect to the catalyst concentration and zero order with respect to substrate concentration. Activation parameters could be obtained from the evaluation of the rate constants at different temperature. The results reveal that intrazeolite cobalt(0) nanoclusters can be considered as promising candidate to be used as catalyst in developing highly efficient portable hydrogen generation systems using ammonia-borane as solid hydrogen storage material.  相似文献   

6.
Herein we report the preparation, characterization and the catalytic use of the polymer-immobilized palladium catalyst supported on TiO2 (Pd-PVB-TiO2) in the hydrolysis of unstirred ammonia-borane solution. The polymer-immobilized palladium catalyst is stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. The immobilized palladium catalyst supported on TiO2 is found highly active, isolable, and reusable in the hydrolysis of unstirred ammonia-borane even at low concentrations and temperature. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 55.9 kJ/mol) and the effects of catalyst and substrate concentration on the rate for the hydrolysis of unstirred ammonia-borane solution. Maximum H2 generation rate of ∼642 mL H2 min−1 (g Pd)−1 and ∼4367 mL H2 min−1 (g Pd)−1 was measured by the hydrolysis of AB at 25 °C and 55 ± 0.5 °C, respectively.  相似文献   

7.
In this work, poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium nanoparticles (NPs) supported on bamboo leaf-derived porous carbon (Ru/BC) has been synthesized via a one-step procedure. The structure and morphology of the as-synthesized samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM). As a catalyst for hydrogen generation from the hydrolysis of ammonia-borane (AB, NH3BH3) at room temperature, Ru/BC stabilized with 1 mg of PVP exhibited high activity (TOF = 718 molH2·molRu−1·min−1) and low activation energy (Ea = 22.8 kJ mol−1). In addition, the catalyst could be easily recovered and showed fairly good recyclability with 55.6% of the initial catalytic activity retained after ten experimental cycles, which confirmed that PVP could stabilize the Ru NPs and prevent their agglomeration on BC surface. Our results suggest that PVP-stabilized Ru/BC is a highly efficient catalyst for the hydrolysis of AB.  相似文献   

8.
The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH4) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH2 functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH4 and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH4. A hydrogen generation rate of 32.3 L min−1 g−1 (Ru) in a 10 wt.% NaBH4 + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported.  相似文献   

9.
Development of supported ligand-free ultrafine Rh nanocatalysts for efficient catalytic hydrogen evolution from ammonia borane (AB) is of importance but remains a tremendous challenge. Here, ultrafine and ligand-free Rh nanoparticles (NPs) (2.19 nm in diameter) were in-situ decorated on porous phosphorus-functionalized carbon (PPC) prepared by pyrolyzing hyper-cross-linked networks of triphenylphosphine and benzene. The resultant Rh/PPC showed excellent hydrogen production activity from AB hydrolysis (Turnover frequency: 806 min−1). Kinetic investigations indicated that AB hydrolysis using Rh/PPC exhibited first-order and zero-order reactions with Rh and AB concentrations, respectively. Activation energy (Ea) toward hydrogen generation from AB with Rh/PPC is as low as 22.7 kJ/mol. The Rh/PPC catalyst was recyclable and reusable for at least four times. The oxygen- and phosphorus-functional groups are beneficial for the affinity of Rh complex on the PPC surface, resulting in ultrafine and ligand-free Rh NPs with high dispersity and ability to supply abundant surface accessibility to catalytically active sites for AB hydrolysis. This study proposes a feasible approach for the synthesis of ultrafine and ligand-free metal NPs supported on heteroatom-doped carbon by using hyper-cross-linked networks.  相似文献   

10.
Ruthenium(0) nanoparticles supported on the surface of titania nanospheres (Ru(0)/TiO2) were in situ generated from the reduction of ruthenium(III) ions impregnated on nanotitania during the hydrolysis of ammonia borane. They were isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The results reveal that highly dispersed ruthenium(0) nanoparticles of size in the range 1.5–3.3 nm were formed on the surface of titania nanospheres. Ru(0)/TiO2 show high catalytic activity in hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value up to 241 min−1 at 25.0 ± 0.1 °C. They provide unprecedented catalytic lifetime measured by total turnover number (TTO = 71,500) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C. The report also includes the results of kinetic study on the catalytic hydrolysis of ammonia borane depending on the temperature to determine the activation energy of the reaction (Ea = 70 ± 2 kJ/mol) and the catalyst concentration to establish the rate law of the reaction.  相似文献   

11.
In this paper, ruthenium supported on nitrogen-doped porous carbon (Ru/NPC) catalyst is synthesized by a simple method of in situ reduction using ammonia borane (AB) as reducing agent. The composition and structure of Ru/NPC catalyst are systematically characterized. This catalyst can efficiently catalyze the hydrolysis of AB. The hydrogen production reaction is completed within about 90 s at a temperature of 298 K and the maximum rate of hydrogen production is 3276 ml·s−1·g−1 with a reduced activation energy of 24.95 kJ·mol−1. The turnover frequency (TOF) for hydrogen production is about 813 molH2·molRu−1·min−1. Moreover, this catalyst can be recycled with a well-maintained performance. After five cycles, the maximum rate of hydrogen generation is maintained at 2206 ml·s−1·g−1, corresponding to 67.3% of the initial catalytic activity. Our results suggest that Ru/NPC prepared by in situ reduction is a highly efficient catalyst for hydrolytic dehydrogenation of AB.  相似文献   

12.
Catalytically active, low-cost, and reusable transition metal catalysts are desired to develop on-demand hydrogen generation system for practical onboard applications. By using electroless deposition method, we have prepared the Pd-activated TiO2-supported Co-Ni-P ternary alloy catalyst (Co-Ni-P/Pd-TiO2) that can effectively promote the hydrogen release from ammonia-borane aqueous solution. Co-Ni-P/Pd-TiO2 catalysts are stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. They are isolable, redispersible and reusable as an active catalyst in the hydrolysis of AB. The reported work also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 54.9 kJ mol−1) and effects of the amount of catalyst, amount of substrate, and temperature on the rate for the catalytic hydrolysis of AB. Maximum H2 generation rate of ∼60 mL H2 min−1 (g catalyst)−1 and ∼400 mL H2 min−1 (g catalyst)−1 was measured by the hydrolysis of AB at 25 °C and 55 °C, respectively.  相似文献   

13.
The exploration of cheap and efficient electrodes for hydrogen evolution reactions (HER) is extremely challenging. Herein, we report a newly-designed V2O3@Ni hybrid grown in situ on nickel foam as an efficient HER catalyst. The nickel foam not only promoted the electron transfer rate as a supporting substrate, but also worked as the source of Ni to enhance the integration of catalyst components with abundant active sites. Moreover, benefitting from the synergistic effect of the interface between V2O3 and Ni, which accelerated the entire electrochemical kinetics and facilitated the electron transfer, the in situ V2O3@Ni hybrid catalysts afforded a small overpotential of 47 mV and 100 mV at a current density of 10 mA cm?2 in 1.0 M KOH and 1.0 M PBS, respectively, and with excellent long-term stability. In addition, this research provides a new route for the fabrication of noble-metal-free electrocatalysts with excellent HER performance over a broad range of pH values.  相似文献   

14.
A novel recyclable cobalt nanocatalyst, supported on magnetic carbon with core-shell structure, was successfully synthesized by using wetness impregnation-chemical reduction method for hydrogen generation from hydrolysis of NaBH4. The resultant nanocomposite was characterized to determine the structural and physical-chemical properties by a series of analytical techniques such as FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscope), EDX (energy-dispersive X-ray spectroscopy), TEM (transmission electron microscopy), etc. The results demonstrated that amorphous cobalt nanoparticles were homogeneously surrounded on the surface of the support due to having abundant hydrophilic groups (such as aldehyde and hydroxyl groups) on the surface of carbon layer for the effective immobilization of metal ions. The supported catalyst showed superior catalytic performance towards the hydrolysis reaction of NaBH4 at room temperature. The total rate of hydrogen generation and activation energy were calculated to be 1403 ml H2 gcat?1 min?1 and 49.2 kJ mol?1, respectively, which were comparable to the values of most cobalt-based catalyst reported for hydrogen production from hydrolysis of NaBH4. Additionally, reusability test revealed that the hydrogen in NaBH4 substrate could be completely released within 25 min with a minimum hydrogen generation rate of 832 ml H2 gcat?1 min?1 even after five runs of hydrolytic reaction, implying the as-prepared Co/Fe3O4@C composite could be considered as a promising candidate catalyst for portable hydrogen fuel system such as PEMFC (proton exchange membrane fuel cells).  相似文献   

15.
Herein we report for the first time the preparation and catalytic use of the ceria supported manganese(0) nanoparticles in hydrogen generation from the hydrolysis of sodium borohydride. They are in situ formed from the reduction of manganese(II) ions on the surface of ceria nanopowders during the catalytic hydrolysis of sodium borohydride in aqueous solution at room temperature. Manganese(0) nanoparticles are isolated from the reaction solution by centrifugation and characterized by a combination of analytical techniques. Nanoceria supported manganese(0) nanoparticles are highly active and long-lived catalysts providing a turnover frequency of 417 h?1 and 45,000 turnovers in hydrogen generation from the hydrolysis of sodium borohydride at 25.0 ± 0.1 °C. They also have high durability as they retain 55% of their initial catalytic activity after the fifth cycle of hydrolysis providing a release of 4 equivalent H2 gas per mol of sodium borohydride. The noticeable activity loss in successive runs of hydrolysis is attributed to the deactivation due to agglomeration. High activity and stability of ceria supported manganese(0) nanoparticles are ascribed to the unique nature of reducible cerium oxide. The formation of cerium(III) defects under catalytic conditions provides strong binding for the manganese(0) nanoparticles to oxide surface which makes the catalytic activity and stability favorable. Our report also includes the results of kinetic study of catalytic hydrolysis of sodium borohydride depending on the temperature, catalyst and substrate concentration.  相似文献   

16.
Nowadays, there is still no suitable method to store large amounts of energy. Hydrogen can be stored physically in carbon nanotubes or chemically in the form of hydride. In this study, sodium borohydride (NaBH4) was used as the source of hydrogen. However, an inexpensive and useful catalyst (Co–Cr–B/CeO2) was synthesized using the NaBH4 reduction method and its property was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), x-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) measurements. The optimized Co–Cr–B/CeO2 catalyst exhibited an excellent hydrogen generation rate (9182 mLgmetal−1min−1) and low activation energy (35.52 kJ mol−1). The strong catalytic performance of the Co–Cr–B/CeO2 catalyst is thought to be based on the synergistic effect between multimetallic nanoparticles and the effective charge transfer interactions between the metal and the support material.  相似文献   

17.
Effective catalysts for hydrogen generation from ammonia borane (AB) hydrolysis should be developed for the versatile applications of hydrogen. In this study, ruthenium nanoparticles (NPs) supported on alumina nanofibers (Ru/Al2O3-NFs) were synthesized by reducing the Ru(Ш) ions impregnated on Al2O3-NFs during AB hydrolysis. Results showed that the Ru NPs with an average size of 2.9 nm were uniformly dispersed on the Al2O3-NFs support. The as-synthesized Ru/Al2O3-NFs exhibited a high turnover frequency of 327 mol H2 (mol Ru min)?1 and an activation energy of 36.1 kJ mol?1 for AB hydrolysis at 25 °C. Kinetic studies showed that the AB hydrolysis catalyzed by Ru/Al2O3-NFs was a first-order reaction with regard to the Ru concentration and a zero-order reaction with respect to the AB concentration. The present work reveals that Ru/Al2O3-NFs show promise as a catalyst in developing a highly efficient hydrogen storage system for fuel cell applications.  相似文献   

18.
Ammonia borane (AB) is considered to be a promising solid hydrogen carrier. In this work, poly(N-vinyl-2-pyrrolidone) (PVP)-protected platinum nanoparticles are supported on γ-methacryloxypropyltrimethoxysilane (γ-MPS) modified silica spheres (Pt-PVP/SiO2(M)), which are firstly used as highly efficient catalysts for hydrolysis of AB. Platinum nanoparticles possess a tiny size of 2–3 nm and are uniformly dispersed over modified silica spheres. Pt-PVP/SiO2(M) catalysts with a Pt loading amount of 1.30 wt% show the highest catalytic activity with a turnover frequency (TOF) value of 371 molH2 molPt?1 min?1 (866 molH2 molPt?1 min?1 corrected for the surface atoms) at 25 °C. The activation energy is calculated to be 46.2 kJ/mol. Furthermore, owing to the synergistic effect between the modifier of silica spheres and the capping agent of metal nanoparticles, Pt-PVP/SiO2(M) catalysts have a higher loading amount (8.7 and 6.5 times) and TOF value (4.8 and 5.5 times) than the counterparts prepared without γ-MPS and PVP, respectively.  相似文献   

19.
Well dispersed magnetically recyclable bimetallic CoxNi1−x (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) nanoparticles (NPs) supported on graphene have been synthesized via a facile in situ one-step procedure, using the mixture of sodium borohydride (NaBH4) and methylamine borane (MeAB) as the reducing agent under ambient condition. These NPs were composition dependent for catalytic hydrolysis of amine boranes. Among all the CoNi/graphene catalysts tested, the Co0.9Ni0.1/graphene NPs exhibit the highest catalytic activity toward hydrolysis of AB with the turnover frequency (TOF) value of 16.4 (mol H2 min−1 (mol catalyst)−1), being higher than that of most reported non-noble metal-based NPs, and even many noble metal-based NPs. Moreover, the activation energy (Ea) value is 13.49 kJ/mol, which is the second lowest value ever reported for catalytic hydrolytic dehydrogenation of ammonia borane, indicating the superior catalytic performance of the as-synthesized Co0.9Ni0.1/graphene catalysts. Additionally, Compared with other reducing agents, such as NaBH4, AB, MeAB, and the mixture of NaBH4 and AB, the as-synthesized Co0.9Ni0.1/graphene catalysts reduced by the mixture of NaBH4 and MeAB exert the highest catalytic activity. The Co0.9Ni0.1 NPs supported on graphene exhibit higher catalytic activity than catalysts with other conventional supports, such as SiO2, carbon black, and γ-Al2O3. Furthermore, the as-synthesized Co0.9Ni0.1/graphene NPs show good recyclability and magnetically reusability for the hydrolytic dehydrogenation of amine boranes, which make the practical reusing application of the catalysts more convenient.  相似文献   

20.
Ceria supported ruthenium nanoparticles (Ru0/CeO2) are synthesized by impregnation of Ru3+ ions on CeO2 powders followed by sodium borohydride reduction of Ru3+/CeO2. Their characterization was achieved using analytical methods including TEM, XRD, BET, SEM, and XPS. All the results reveal the formation of ruthenium(0) nanoparticles in 1.8 ± 0.3 nm size on CeO2 support. Ru0/CeO2 nanoparticles show high activity in catalyzing the H2 evolution from dimethylamine borane (DMAB). Ru0/CeO2 nanoparticles with 0.55% wt Ru provide the highest turnover frequency (812 h−1) for releasing H2 from DMAB at 60 °C and a total of 2500 turnovers before deactivation. High activity of Ru0/CeO2 nanoparticles for catalytic dehydrogenation of DMAB is attributable to the reducible nature of CeO2 support. Ce3+ defects formation in ceria under reducing conditions of dehydrogenation causes accumulation of negative charge on the oxide support, which makes oxide surface attractive for the ruthenium(0) nanoparticles. This, in turn, causes an enhancement in the metal-support interaction and thus in catalytic activity. The XPS analysis of bare ceria and Ru0/CeO2 demonstrates the increase in the concentration of Ce3+ defects after catalysis. Ru0/CeO2 nanoparticles are also reusable catalyst for H2 evolution from DMAB retaining 40% of initial activity after 4th run of reaction. The catalytic activity of Ru0/CeO2 nanoparticles and activation energy of catalytic dehydrogenation are compared with those of the other ruthenium based catalysts known in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号