首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trimethylbenzene (TMB)-assisted ordered mesoporous nickel–alumina catalyst (denoted as TNA) was prepared by a single-step evaporation-induced self-assembly (EISA) method, and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, an ordered mesoporous nickel–alumina catalyst (denoted as NA) was also prepared by a single-step EISA method in the absence of TMB. Pore volume and average pore diameter of TNA catalyst were larger than those of NA catalyst due to structural modification caused by TMB addition in the preparation of TNA catalyst. In addition, TNA catalyst showed less ordered mesoporous array than NA catalyst. Both NA and TNA catalysts exhibited diffraction patterns corresponding to nickel aluminate phase, and they retained surface nickel aluminate phase with high stability and reducibility. Crystallite size of metallic nickel in the reduced TNA catalyst was smaller than that in the reduced NA catalyst due to strong nickel–alumina interaction of surface nickel aluminate phase over TNA catalyst. In the hydrogen production by steam reforming of LNG, TNA catalyst with small crystallite size of metallic nickel showed a better catalytic performance than NA catalyst in terms of LNG conversion and hydrogen yield. Furthermore, steam reforming reaction rather than water–gas shift reaction favorably occurred over TNA catalyst.  相似文献   

2.
A mesoporous nickel–alumina aerogel catalyst (NiAE-SS) was prepared by a single-step sol–gel method and a subsequent CO2 supercritical drying method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel catalyst supported on alumina aerogel (Ni/AE-IP) was also prepared by an impregnation method. The effect of preparation method of supported nickel catalysts on their physicochemical properties and catalytic performance in the steam reforming of LNG was investigated. NiAE-SS catalyst retained superior textural properties compared to Ni/AE-IP catalyst. Nickel species were finely dispersed on the surface of both Ni/AE-IP and NiAE-SS catalysts through the formation of surface nickel aluminate phase. Although both Ni/AE-IP and NiAE-SS catalysts exhibited a stable catalytic performance, NiAE-SS catalyst showed a better catalytic performance than Ni/AE-IP catalyst in terms of LNG conversion and hydrogen yield. High nickel surface area, high nickel dispersion, and well-developed mesoporosity of NiAE-SS catalyst played an important role in enhancing the catalytic performance in the steam reforming of LNG. Uniformly distributed metallic nickel particles in the NiAE-SS catalyst were also responsible for its high catalytic performance.  相似文献   

3.
A mesoporous nickel–phosphorus–alumina aerogel catalyst (NPAA) was prepared by a single-step epoxide-driven sol–gel method and a subsequent supercritical CO2 drying method for use in the hydrogen production by steam reforming of liquefied natural gas (LNG). In order to investigate the effect of drying method of nickel–phosphorus–alumina catalysts on their physicochemical properties and catalytic activities, a mesoporous nickel–phosphorus–alumina xerogel catalyst (NPAX) was also prepared by a single-step epoxide-driven sol–gel method and a subsequent evaporative drying method for comparison purpose. It was found that supercritical CO2 drying method was effective for enhancing textural properties of NPAA catalyst. Although both NPAX and NPAA catalysts retained surface nickel aluminate phase, NPAA catalyst showed stronger metal-support interaction than NPAX catalyst. XRD patterns of reduced NPAX and NPAA catalysts revealed that NPAA catalyst retained smaller metallic nickel crystallite than NPAX catalysts. It was also observed that the reduced NPAA catalyst exhibited high nickel dispersion, large amount of strong hydrogen-binding sites, and large amount of methane adsorption compared to the reduced NPAX catalyst. In the steam reforming of LNG, NPAA catalyst with high affinity toward methane showed a better catalytic performance than NPAX catalyst.  相似文献   

4.
A series of mesoporous nickel–boron–alumina xerogel (x-NBA) catalysts with different boron/nickel molar ratio (x = 0–1) were prepared by an epoxide-driven sol–gel method. The effect of boron/nickel molar ratio on the catalytic activities and physicochemical properties of nickel–boron–alumina xerogel catalysts was investigated in the steam reforming of liquefied natural gas (LNG). All the mesoporous x-NBA catalysts showed similar surface area. Introduction of boron increased interaction between nickel and support. In addition, introduction of boron into x-NBA catalysts reduced methane activation energy and increased nickel surface area. Promotion of boron had a positive effect on the catalytic activity due to the increase of adsorbed methane and nickel surface area. The amount of adsorbed methane and nickel surface area exhibited volcano-shaped trends with respect to boron/nickel molar ratio. LNG conversion and hydrogen yield increased with increasing the amount of adsorbed methane and with increasing nickel surface area. Among the catalysts, 0.3-NBA, which retained the largest amount of adsorbed methane and the highest nickel surface area, showed the best catalytic performance. It was also revealed that x-NBA catalysts showed strong coke resistance during the steam reforming reaction.  相似文献   

5.
A series of mesoporous nickel–alumina xerogel catalysts (denoted as CNAX) were prepared by a single-step carbon-templating sol–gel method using different amount of carbon template (X), and they were applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). Textural properties of CNAX catalysts were improved with increasing the amount of carbon template. CNAX catalysts exhibited diffraction peaks corresponding to nickel aluminate phase, while CNA18 and CNA24 catalysts showed additional bulk nickel oxide phase. From TPR measurements, it was revealed that the interaction between nickel species and alumina in the CNAX catalysts became weakened with increasing the amount of carbon template. Crystallite size of metallic nickel in the reduced CNAX catalysts showed a volcano-shaped trend with respect to the amount of carbon template. In the steam reforming of LNG, CNAX (X = 0, 6, 12, and 18) catalysts exhibited a stable catalytic performance during the reaction, while CNA24 catalyst showed a significant catalyst deactivation. Crystallite size of metallic nickel served as an important factor determining the catalytic performance in the steam reforming of LNG. Initial LNG conversion and initial hydrogen yield increased with decreasing crystallite size of metallic nickel of the catalysts. Among the catalysts tested, CNA12 catalyst with the smallest crystallite size of metallic nickel showed the best catalytic performance.  相似文献   

6.
Hydrogen energy has attracted considerable attention because of its efficiency and environmental benefits, and the increasing demand requires finding renewable sources of raw materials to produce it. Glycerol, by-product of biodiesel production and coming from renewable raw materials, could be a bio-renewable substrate to produce hydrogen. The glycerol steam reforming to obtain hydrogen was evaluated using a 5.1 wt% Ni impregnated on Al2O3 catalyst, characterized by nitrogen adsorption, XRD, and FTIR. Deactivation processes were analyzed in successive cycles of reaction at 700 °C, atmospheric pressure, 5 h−1 WHSV, and 3:1 water:glycerol molar ratio, during 12 h. Between reaction cycles, regenerating took place using a He/Air stream. Hydrogen was the main product on the fresh catalyst, following by CO and CH4; during reaction, carbonaceous deposits deactivated catalyst, decreasing H2 and increasing both CO and CH4. Carbonaceous deposits were characterized by TPO, showing a main peak centered at 690 °C; the carbon content reached 11.9%.  相似文献   

7.
8.
Mesoporous Ni–Al2O3 catalysts (denoted as NiAl–NH4OH, NiAl–KOH, NiAl–NaOH, and NiAl–Na2CO3) were prepared by a sequential precipitation method using various basic solutions (NH4OH, KOH, NaOH, and Na2CO3) as precipitation agents. They were then applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of precipitation agent on the physicochemical properties and catalytic activities of mesoporous Ni–Al2O3 catalysts in the steam reforming of LNG was investigated. Physicochemical properties of Ni–Al2O3 catalysts were strongly influenced by the precipitation agent. Surface area and pore volume of Ni–Al2O3 catalysts decreased in the order of NiAl–NH4OH > NiAl–KOH > NiAl–NaOH > NiAl–Na2CO3. Regardless of the identity of precipitation agent, nickel species were finely dispersed on the surface of Ni–Al2O3 catalysts through the formation of surface nickel aluminate phase. LNG conversion and hydrogen composition in dry gas decreased in the order of NiAl–NH4OH > NiAl–KOH > NiAl–NaOH > NiAl–Na2CO3. Nickel surface area played an important role in determining the catalytic performance of Ni–Al2O3 catalysts. Among the catalysts tested, NiAl–NH4OH catalyst with the highest nickel surface area showed the best catalytic performance and the strongest resistance toward carbon deposition in the steam reforming of LNG.  相似文献   

9.
Al2O3–ZrO2 (AZ) xerogel supports prepared by a sol-gel method were calcined at various temperatures. Ni/Al2O3–ZrO2 (Ni/AZ) catalysts were then prepared by an impregnation method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AZ supports on the catalytic performance of Ni/AZ catalysts in the steam reforming of LNG was investigated. Crystalline phase of AZ supports was transformed in the sequence of amorphous γ-Al2O3 and amorphous ZrO2  θ-Al2O3 and tetragonal ZrO2   + α)-Al2O3 and (tetragonal + monoclinic) ZrO2  α-Al2O3 and (tetragonal + monoclinic) ZrO2 with increasing calcination temperature from 700 to 1300 °C. Nickel oxide species were strongly bound to γ-Al2O3 and θ-Al2O3 in the Ni/AZ catalysts through the formation of solid solution. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AZ supports. Nickel surface area of Ni/AZ catalysts was well correlated with catalytic performance of the catalysts. Among the catalysts tested, Ni/AZ1000 (nickel catalyst supported on AZ support that had been calcined at 1000 °C) with the highest nickel surface area showed the best catalytic performance. Well-developed and pure tetragonal phase of ZrO2 in the AZ1000 support played an important role in the adsorption of steam and the subsequent spillover of steam from the support to the active nickel.  相似文献   

10.
Mesoporous Ni–Al2O3 catalysts were prepared by impregnation method (NiAl-IP), co-precipitation method (NiAl-CP), and sequential precipitation method (NiAl-SP) for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of preparation method of mesoporous Ni–Al2O3 catalysts on their catalytic activity for steam reforming of LNG was investigated. Physicochemical properties of Ni–Al2O3 catalysts were strongly influenced by the preparation method of Ni–Al2O3 catalysts. Surface area, pore volume, and average pore size of Ni–Al2O3 catalysts decreased in the order of NiAl-SP > NiAl-CP > NiAl-IP. Nickel species strongly interacted with Al2O3 supports through the formation of nickel aluminate phase. Surface nickel aluminate phase of Ni–Al2O3 catalysts was readily reduced after the reduction process, while bulk nickel aluminate phase of NiAl-CP catalyst was hardly reducible. Nickel dispersion and nickel surface area of Ni–Al2O3 catalysts decreased in the order of NiAl-SP > NiAl-CP > NiAl-IP. Among the catalysts tested, NiAl-SP catalyst with the highest nickel surface area showed the best catalytic performance in the steam reforming of LNG. Furthermore, finely dispersed nickel species in the NiAl-SP catalyst efficiently suppressed the carbon deposition during the reaction.  相似文献   

11.
A mesoporous Ni–Al2O3–ZrO2 aerogel (Ni–AZ) catalyst was prepared by a single-step epoxide-driven sol–gel method and a subsequent supercritical CO2 drying method. For comparison, a mesoporous Al2O3–ZrO2 aerogel (AZ) support was prepared by a single-step epoxide-driven sol–gel method, and subsequently, a mesoporous Ni/Al2O3–ZrO2 aerogel (Ni/AZ) catalyst was prepared by an incipient wetness impregnation method. The effect of preparation method on the physicochemical properties and catalytic activities of Ni–AZ and Ni/AZ catalysts was investigated. Although both catalysts retained a mesoporous structure, Ni/AZ catalyst showed lower surface area than Ni–AZ catalyst. From TPR, XRD, and H2–TPD results, it was revealed that Ni–AZ catalyst retained higher reducibility and higher nickel dispersion than Ni/AZ catalyst. In the hydrogen production by steam reforming of ethanol, both catalysts showed a stable catalytic performance with complete conversion of ethanol. However, Ni–AZ catalyst showed higher hydrogen yield than Ni/AZ catalyst. Superior textural properties, high reducibility, and high nickel surface area of Ni–AZ catalyst were responsible for its enhanced catalytic performance in the steam reforming of ethanol.  相似文献   

12.
A series of ZnO–Al2O3 catalysts with various ZnO/(ZnO + Al2O3) molar ratios have been developed for hydrogen production by dimethyl ether (DME) steam reforming within microchannel reactor. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction and temperature programmed desorption of NH3. It was found that the catalytic activity was strongly dependent on the catalyst composition. The overall DME reforming rate was maximized over the catalyst with ZnO/(ZnO + Al2O3) molar ratio of 0.4, and the highest H2 space time yield was 315 mol h−1·kgcat−1 at 460 °C. A bi-functional mechanism involving catalytic active site coupling has been proposed to account for the phenomena observed. An optimized bi-functional DME reforming catalyst should accommodate the acid sites and methanol steam reforming sites with a proper balance to promote DME steam reforming, whereas all undesired reactions should be impeded without sacrificing activity. This work suggests that an appropriate catalyst composition is mandatory for preparing good-performance and inexpensive ZnO–Al2O3 catalysts for the sustainable conversion of DME into H2-rich reformate.  相似文献   

13.
Mesoporous Ni–Al2O3 (XNiAE) aerogel catalysts with different Ni/Al atomic ratio (X) were prepared by a single-step sol-gel method and a subsequent CO2 supercritical drying method. The effect of Ni/Al atomic ratio of mesoporous XNiAE aerogel catalysts on their physicochemical properties and catalytic activity for steam reforming of liquefied natural gas (LNG) was investigated. Textural properties and chemical properties of XNiAE catalysts were strongly influenced by Ni/Al atomic ratio. Nickel species were highly dispersed on the surface of XNiAE catalysts through the formation of surface nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen yield showed volcano-shaped curves with respect to Ni/Al atomic ratio. Average nickel diameter of XNiAl catalysts was well correlated with LNG conversion and hydrogen yield over the catalysts. Among the catalysts tested, 0.35NiAE (Ni/Al = 0.35) catalyst with the smallest average nickel diameter showed the best catalytic performance. The highest surface area, the largest pore volume, the largest average pore size, and the highest reducibility of 0.35NiAE catalyst were also partly responsible for its superior catalytic performance.  相似文献   

14.
Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts (denoted as XNiAZ) with different nickel content (X, wt%) was studied. A single-step epoxide-driven sol–gel method was employed for the preparation of the catalysts. The effect of nickel content of XNiAZ catalysts on their physicochemical properties and catalytic activities was investigated. All the XNiAZ catalysts exhibited a well-developed mesoporous structure and they dominantly showed an amorphous NiO–Al2O3–ZrO2 composite phase, leading to high dispersion of NiO. Nickel surface area and reducibility of XNiAZ catalysts showed volcano-shaped trends with respect to nickel content. Nickel surface area of XNiAZ catalysts played a key role in determining the catalytic performance in the steam reforming of ethanol; an optimal nickel content was required for maximum production of hydrogen. Among the catalysts tested, 15NiAZ catalyst with the highest nickel surface area exhibited the best catalytic performance in the steam reforming of ethanol. In addition, 15NiAZ catalyst showed high and stable hydrogen yields under different total feed rate, demonstrating its potential applicability in large-scale hydrogen production.  相似文献   

15.
Ni-based catalysts (Ni, Ni–La2O3, and Ni–La2O3–CeO2) on mesoporous silica supports (SBA-15 and KIT-6) were prepared by an incipient wetness impregnation and tested in glycerol steam reforming (GSR) for hydrogen-rich gas production. The catalysts were characterized by the N2-physisorption, TPD, X-ray diffraction (XRD), SEM-EDS, and TEM techniques. N2-physisorption results of calcined catalysts highlight that adding of La2O3 increased surface area of the catalyst by preventing pore mouth plugging in SBA-15, which was frequently observed due to the growth of NiO crystals. A set of GSR experiments over the catalysts were performed in an up-flow continuous packed-bed reactor at 650 °C and atmospheric pressure. The highest hydrogen concentration of 62 mol% was observed with a 10%Ni–5%La2O3 –5%CeO2/SBA-15 catalyst at a LHSV of 5.8 h−1. Adding of CeO2 to the catalyst appeared to increase catalytic stability by facilitating the oxidative gasification of carbon formed on/near nickel active sites of Ni–La2O3–CeO2/SBA-15 and Ni–La2O3–CeO2/KIT-6 catalyst during the glycerol steam reforming reaction.  相似文献   

16.
The catalytic behaviors of Rh catalysts supported on Ce–La solid solution in H2 production from the oxidative steam reforming (OSR) of ethanol were studied for the first time. 1%Rh/Ce0.7La0.3Oy exhibits 100% ethanol conversion at 573 K with H2 yield rate 214 μmol g-cat−1 s−1, which is 150 K lower than that required for comparable performance with 1%Rh/CeO2. La doping also enhanced the stability by accelerating CH3COCH3 conversion and gave low CO selectivity due to the high water gas shift activity. X-ray diffraction and Raman spectroscopy characterizations indicate the formation of Ce–La solid solutions and oxygen vacancies. H2 temperature-programmed reduction and thermo-gravimetric measurement results confirmed that the redox properties of Rh/CeO2 were greatly enhanced by La doping, which accelerated ethanol conversion, promoted H2 yield, and maintained good long–term activity for the OSR reaction.  相似文献   

17.
The Ce1?xLaxO2?δ solid solution (CL) supported Ir (nIr/CL, n = 2, 5 and 10 wt.%) catalysts are studied for H2 production from ethanol oxidative steam reforming (OSR). The Ir dispersion, surface area, oxygen vacancy density and carbon deposition resistance of nIr/CL catalysts are greatly enhanced compared with Ir/CeO2. Among the tested catalysts, 5%Ir/CL shows the best catalytic performance, exhibiting >99.9% ethanol conversion at 400 °C with H2 yield rate of 323 μmol·gcata?1·s?1 and no obvious carbon deposition after used. The 5%Ir/CL catalyst contains the highest amount of reducible interface Ce4+, leading to a strong interaction with surface Ir species at the metal-support interface during the OSR reaction. The strong interaction induces Ir to be well dispersed on the CL support, and is associated with more redox-active sites (interface Ce4+/Ce3+), to guarantee high activity.  相似文献   

18.
Glycerin is a low cost renewable byproduct of the biodiesel industry, and can be reformed into hydrogen. Here we describe the development of cerium promoted nickel cobalt catalysts on alumina supports for the liquid phase reforming of aqueous glycerine in subcritical water. The bimetallic Ni–Co catalyst was prepared using the urea matrix combustion method over a wide range of compositions both with and without cerium. TPR profiles indicated a synergism between the metals, however, the catalysts deactivated due to carbon deposition as plaques, and in some compositions due to sintering. Cerium (2Ce–Ni1Co3) suppressed sintering and lowered methane selectivity by comparison with Ni1Co3 alone.  相似文献   

19.
The production of high purity hydrogen via the sorption-enhanced steam reforming of acetic acid, a model compound of bio-oil, was investigated in this work. A bi-functional catalyst with stable catalytic activity and CO2-capture ability, Ni/CexZr1−xO2-CaO, was prepared by a sol–gel method and characterized in details by BET, XRD, TPR and SEM-EDX analytic techniques. The characterization of these materials showed that the catalysts were mainly composed of Ni, CexZr1−xO2 and CaO. As CaO loading increased, a new species, CaZrO3, with a perovskite structure was formed. The presence of CaZrO3 in the catalysts acted as a barrier to CaO grain growth at high temperatures and thus improved the CO2-capture stability. These catalysts exhibited good CO2 sorption capacity in 15 consecutive carbonation–calcination cycles, even at a high calcination temperature of 900 °C. Particularly, in case of the Ni/CZC-2.5 catalyst, 98% high purity H2 could be obtained during the prebreakthrough stage when the catalysts were tested in the SESR of acetic acid at 550 °C with an S/C ratio of 4. In addition, high hydrogen purity was maintained over 15 cyclic reaction-calcination operations, which was mainly attributed to the uniform distribution of Ni, CaO, CexZr1−xO2 and CaZrO3 in the catalysts. These results indicated the great potential of the SESR technique for hydrogen production from bio-oil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号