首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
高温稀土晶体的快速生长能够在很大程度上降低晶体的生长成本,然而过快的生长速度会造成熔体上方过冷,带来晶体开裂等严重的质量问题.本文从生长界面处的微观化学键合结构出发研究晶体的可控生长过程,理论上证明了结晶热力学和动力学协同控制晶体生长界面处的化学键合过程.计算结果表明界面处化学键合结构在单晶生长中具有决定性作用.本文还从轨道杂化的角度研究了稀土离子的成键特性,可用于研究稀土离子在生长界面处的化学键合结构.针对大尺寸稀土氧化物晶体,结晶生长的化学键合理论可以定量优化晶体的系列生长参数,将各向异性的结晶热力学表达和各向同性的结晶动力学表达控制在不同尺度区间,实现高品质稀土晶体快速生长.  相似文献   

2.
晶体早期生长的研究揭示,在某些体系中,晶体生长可能并不遵循传统路径.借由某些聚合物或生物分子的帮助,无机晶体的前驱体或纳米晶体在生长初期有可能聚集为无序的大块颗粒.这些聚集体表面晶化形成高结晶度高密度的外壳,随后完成从表面到核心的晶化过程.此逆向晶体生长机理在一些诸如沸石、钙钛矿、金属和金属氧化物等无机化合物体系中均已被发现,在其他材料体系里也将得到验证.认识这一新的晶体生长路径将给予我们更多的自由度来实现晶体形态控制,也有助于我们对于许多天然矿物形成机制的理解.本文简要回顾了最近本领域研究中一些典型逆向晶体生长的例子.  相似文献   

3.
对晶体生长机制、动力学与微结构衍化的认识是实现纳米材料的尺寸和形貌可控制备的基础.以表面溶解沉积为特征的奥斯特瓦尔德熟化(0R)理论常用来解释传统的晶体生长过程.在该生长模式下,纳米晶体的生长呈现出小颗粒溶解而大颗粒逐渐长大的特征.在纳米材料体系,近来还发现了一种重要的新的晶体生长模式——“取向接合(OA)”机制,在该机制下,两个晶格取向一致的初级纳米颗粒可通过直接接合和结构调整,从而长成一个新的晶体.这一机制已被证实在许多纳米材料体系中广泛存在,并对所合成的纳米材料的形貌、微结构具有非常显著的影响,在构筑新型纳米结构方面具有潜在的优势.本文我们首先回顾了OA生长机制的认识历程和这一机制对材料科学的重大意义;进而,基于我们的研究工作系统介绍了OA生长动力学模型的建立与发展,进一步阐述了这一机制的微观过程及其对材料内部缺陷的特殊影响,深入地分析和讨论了表面包裹的强弱、表面作用的性质对OR机制和OA机制的抑制和调控作用;基于上述表面包裹可调控纳米材料的生长机制的认识,我们结合近期研究结果,从动力学角度分析了量子点的生长机制与其发光特性的内在关联,阐明了表面包裹调控量子点的发光性质的本质原因,为制备不同发光特征的量子点及理解其发光性质衍化规律提供了重要的理论指引.  相似文献   

4.
纳米晶体很多重要的物理化学性质与其表面结构密切相关,纳米晶的表面结构调控及相关理论研究是前沿和热点领域.本评述总结了非平衡态过饱和条件下纳米晶体生长热力学相关理论及其在离子晶体、分子晶体、贵金属、氧化物、金属有机框架等5类纳米晶体表面结构控制中的应用.从热力学推导出的"类"Thomson-Gibbs方程可以发现,晶体裸露晶面的表面能与其生长过程生长基元的过饱和度成正比.该理论揭示了过饱和度在纳米晶体表面结构控制中的重要作用,为合理设计合成具有特定表面结构的纳米晶提供了有效指导.  相似文献   

5.
表面结构是影响固体材料物理和化学性质的重要因素,由于高表面能的晶面上存在更多的表面悬挂键等,高表面能晶面裸露的微纳米晶体一般表现出很好的物理和化学活性.近年来,科研工作者针对高能面微纳米晶体材料的制备及性能调控进行了大量的研究工作并取得了一定的进展.本文重点讨论了高能面裸露的金属氧化物半导体微纳米晶体的合成制备方法.主要以本课题组近年在该领域的研究为例,分别从晶体生长过程中的静电作用法、“帽”式试剂保护法、过饱和度调控法、动力学调控法及选择性化学刻蚀法等几个方面对高表面能晶面裸露的金属氧化物微纳米晶体的制备进行了系统的总结.  相似文献   

6.
以水热方法制备具有多级纳米结构的In2S3空心微球. 通过对不同反应时间产物的跟踪表征, 证明微球中空结构的形成归因于Ostwald ripening机理. 空心微球的壳层由In2S3的纳米粒子或纳米片组成, In2S3空心球的紫外可见光谱蓝移以及荧光光谱在约385 nm的强发射和364 nm的弱发射, 均显示了纳米尺度In2S3晶体的量子局限效应. 以不同的氨基酸作为晶体生长修饰剂, 可以选择性地制备不同表面形貌的In2S3空心微球, 显示了氨基酸的不同功能团在In2S3晶体生长过程中对表面形貌的控制作用.  相似文献   

7.
王萍  葛志磊  裴昊  王丽华  樊春海 《化学学报》2012,70(20):2127-2132
通过石英晶体振荡技术研究了杂交链式反应这种核酸扩增的方法. 石英晶体微天平可以表征在晶体和溶液的界面上的DNA层, 并获得粘性穿透深度这一重要参数. 根据石英晶体表面吸附质量和振荡频率之间的关系, 我们测量了表面引发的杂交链式反应的动力学过程, 并获得界面上的粘度、剪切模量等参数. 这一工作为研究固液界面上核酸反应过程, 特别是杂交链式反应的机制提供了新的途径.  相似文献   

8.
基于晶体生长动力学的非平衡非线性特性和耗散结构的概念,提出了一个非理想的界面反应一扩散模型,其中界面动力学引起的晶面多重态现象和扩散过程的耦合可导致滞后现象。它可以解释某些晶体中有序条纹的形成。  相似文献   

9.
电化学石英晶体微天平(EQCM)即石英晶体微天平(QCM)与电化学检测相结合的测试技术。电化学石英晶体微天平以其简单、快速,可以在纳克级水平上对活性物质在石英晶振片上发生的沉积、吸附或溶解等过程进行动态检测等优势而成为表界面反应研究的有效手段之一。由于EQCM测试技术为原位测试方法,可以实现在线实时监测,利用其高精度和高灵敏度可以进一步对表界面上发生反应的过程及深层次的机理进行分析。本文就EQCM在电化学、生物医学及油田化学等领域以及研究机理及动力学等方面的应用进行了总结阐述,提出了EQCM的研究新方向以及发展中面临的问题。  相似文献   

10.
TiO2颗粒表面包覆SiO2纳米膜的动力学模型   总被引:12,自引:1,他引:11  
针对液相法二氧化钛颗粒表面包覆氧化硅纳米膜的过程,提出包覆过程是溶胶凝胶机制,研究了表面成膜的动力学方程,考察了成膜剂浓度和成膜过程中温度对成膜速度的影响,并通过实验对氧化硅膜形成的动力学方程进行了验证.  相似文献   

11.
Recent constant composition dissolution studies of sparingly soluble calcium phosphates have revealed an interesting and unusual behavior in that the rates decreased, eventually resulting in effective suppression, even though the solutions remained undersaturated. Contrary to traditional theories of dissolution, these experimental results indicated the importance of not only the particle size on the dissolution rate but also the participation of critical phenomena. In these theories, it is assumed that when the dissolution reactions are initiated, they continue spontaneously until all solid phase has disappeared. In terms of these mechanisms, there are no critical phenomena in the dissolution mechanism. Although the crystal size decreases during dissolution, when the reaction is controlled by polypitting (formation and growth of pits), the edge free energy increases at the very first stage due to the creation of pits and dissolution steps. The constant composition experimental results demonstrate the development of surface roughness as the dissolution steps are formed, implying an increase of the total edge length during the reactions. In an exactly analogous mechanism to crystal growth, the participation of critical conditions involving dissolution steps is a possibility. In contrast to crystal growth, dissolution is a process of size reduction and, when the particle size is sufficiently reduced, critical phenomena become important so that the influence of size must be taken into consideration. This paper proposes such a model for dissolution reactions, and although these unusual phenomena probably apply to all mineral phases, they are more evident for sparingly soluble electrolytes in which the critical conditions are attained much more readily.  相似文献   

12.
In this work, we examine the phase stability of both uncoated and alumina-coated zirconia nanoparticles using in-situ X-ray diffraction. By tracking structural changes in these particles, we seek to understand how changing interfacial bonding affects the kinetics of amorphous zirconia crystallization and the kinetics of grain growth in both initially amorphous and initially crystalline zirconia nanocrystals. Activation energies associated with crystallization are calculated using nonisothermal kinetic methods. The crystallization of the uncoated amorphous zirconia colloids has an activation energy of 117 +/- 13 kJ/mol, while that for the alumina-coated amorphous colloids is 185 +/- 28 kJ/mol. This increase in activation energy is attributed to inhibition of atomic rearrangement imparted by the alumina coating. The kinetics of grain growth are also studied with nonisothermal kinetic methods. The alumina coating again dramatically affects the activation energies. For colloids that were coated with alumina when they were in an amorphous structure, the coating imparts a 5x increase in the activation energy for grain growth (33 +/- 8 versus 150 +/- 30 kJ/mol). This increase shows that the alumina coating inhibits zirconia cores from coarsening. When the colloids are synthesized in the tetragonal phase and then coated with alumina, the effect of surface coating on coarsening kinetics is even more dramatic. In this case, a 10x increase in activation energies, from 28 +/- 3 kJ/mol for the uncoated particles to 300 +/- 25 kJ/mol for the alumina-coated crystallites, is found. The results show that one can alter phase stability in colloidal systems by using surface coatings and interfacial energy to dramatically change the kinetic barriers to structural rearrangement.  相似文献   

13.
Traditional understanding of dissolution assumes that the reaction is spontaneous and continues until equilibrium is reached. This paper presents theoretical and experimental data to support a dissolution mechanism that involves the existence of critical conditions for dissolution, in which the reaction is accompanied by the formation of pits and the subsequent displacement of pit steps. The accompanying increase in surface roughness leads to changes in surface energy with losses of crystal mass that are positive rather than negative and the existence of critical dissolution conditions. Critical pits and dissolution steps are verified experimentally and a relationship between the size and rate of displacement of steps is also demonstrated, in which the rate decreases with size and approaches zero at a critical size, r*. These microscopic step dynamics are consistent with the observed size-effects in bulk dissolution, which cannot be explained using traditional dissolution theories. The observed size effects include self-inhibition, in which the dissolution rate decreases with extent of reaction, dissolution suppression, and periodic resumption. These interesting dissolution phenomena are only readily displayed when the sizes of dissolving crystallites fall in the same range as the critical size (i.e., within 50r*). It is interesting to note that natural biominerals and many nanoparticles fall into this category, so that their suspensions can be dynamically stabilized without dissolution in undersaturated supporting media. The current research implies that dissolution kinetics cannot be understood well without appealing to fundamental physical concepts about the energetic control of dissolution steps on a molecular level. A new dissolution model for crystallites is introduced systemically.  相似文献   

14.
Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called “laser micro tsunami” makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy‐water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter‐sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser‐induced crystallization and crystal growth are summarized.  相似文献   

15.
以非离子表面活性剂单硬脂酸甘油酯(GMS)制备出稳定的微泡沫. 采用偏光显微镜、冷冻断裂蚀刻透射电子显微镜(FF-TEM)、差示扫描量热仪(DSC)和流变仪对其表面活性剂溶液相态、泡沫体系的微观结构、相变行为和流变性进行研究以探索微泡沫的稳定机理. 实验结果表明, 表面活性剂分子吸附在气泡界面, 发生晶化形成有序、紧密排列的层状液晶凝胶相液膜, 该液膜具有较强的刚性, 能抵抗由Laplace附加压力驱使的气泡溶解和聚并行为. 微泡沫可稳定10个月, 无明显的相分离和气泡破裂现象. 其稳定作用机理是通过影响泡沫排液过程, 增强Gibbs-Marangoni效应, 从而提高了气泡液膜强度, 减缓了气相扩散速率.  相似文献   

16.
Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt‐aided, seed‐induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite‐oriented self‐assembled ZSM‐5 zeolite and 2) enriched intracrystal mesoporous ZSM‐5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite‐1 seeds in the formation of diverse morphologies in a salt‐rich heterogeneous system, combined with the transformation of seed‐embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed‐induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.  相似文献   

17.
An experiment with well defined gas-water interfacial surface area was developed to study the crystallization and crystal growth of methane hydrates. Measurable formation rates were observed only when melting ice was involved. No hydrates nucleated from liquid water or from non-melting ice. It is concluded that melting ice, which like hydrate water is hydrogen-bonded, provides a template for hydrate nucleation as well as providing a heat sink for absorbing the heat of formation during hydrate growth. The experiment was conducted in the absence of mixing so that hydrate crystals grew under quiescent conditions.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

18.
于泳  陈万春  康琦  刘道丹  戴国亮  崔海亮 《化学学报》2006,64(12):1284-1290
采用配液结晶法制取了溶菌酶蛋白质晶体, 使用动态光散射测量了溶液中聚集体的颗粒度几率分布; 使用Zeiss显微镜测定了溶菌酶(110)晶面的生长速度. 实验表明: 随着蛋白质和NaCl浓度的增加, 溶液中聚集体的颗粒尺寸也相应增加. 随着反应时间的增加, 溶菌酶分子在溶液中的聚集反应, 逐渐达到平衡; 在蛋白质和NaCl浓度较高时, 溶菌酶晶体的(110)面生长较快, 而在蛋白质和NaCl浓度较低时, 该晶面生长较慢. 基于二维成核生长机理, 从晶体生长动力学理论方程出发, 计算了二维成核的形成能α=4.01×10-8 J•cm-2.  相似文献   

19.
In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.  相似文献   

20.
In this paper, the influence of rubber particle size on the phase interface in dynamically vulcanized poly(vinylidene fluoride)/silicone rubber (PVDF/SR) blends without any modifier is discussed through the studies of specific surface of crosslinked SR particles, crystallization behavior and crystal morphology of the PVDF phase, interfacial crystallization, melt rheological behavior and mechanical properties of blends. A series of decreased average particle size was successfully obtained by control of rotor rate. It was found that properly high rotor rate helped to achieve a reduced particle size and a narrowing size distribution. The reduced SR particle size enlarged the PVDF/SR interface which has a positive effect on the interfacial crystallization and the melt rheological behavior. At high SR content, the negative effect of the poor interface interactions played the dominate role on determining the mechanical properties. However, the blend exhibited a unique stiffness-toughness balance at the PVDF/SR = 90/10. We hope that the present study could help to lay a scientific foundation for further design of a useful PVDF/SR blend with promoted properties to partly replace the high-cost synthetic fluorosilicone materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号