首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review, particular importance is given to the fabrication and properties of carbon nanotube and graphene oxide-based paper-like materials (buckypapers). Different strategies for the reduction and functionalization of graphene oxide were also discussed. The chemistry of buckypapers is conversed with special emphasis on structure and essential characteristics of buckypaper. Various techniques for buckypaper processing have been critically reviewed including significance of each method. Moreover, importance of polymer/graphene oxide and polymer/carbon nanotube composite papers has been highlighted. Due to outstanding physical, thermal, and electrical properties, polymer-based buckypapers are potentially important as nanofilters, fuel cell components, and miniaturization of electrical connections.  相似文献   

2.
Polyurethane foam is a polymeric material having cellular structure. Multifunctional polyurethane foams reinforced with nanofiller have combined enhanced specific properties with density reduction. This article primarily considers important aspects of various foam processing techniques. Numerous nanofillers such as graphite, graphene, graphene oxide, carbon black, carbon nanotube, nanoclay, and inorganic nanoparticle have been reinforced in polyurethane foam. Particular attention is given to various categories of polymer/carbon nanofiller and polymer/inorganic nanofiller composite foams. Applications of polyurethane composite foams have been focused with relevance to aerospace and automotive industry, radar absorbing and electromagnetic interference shielding, oil absorbants, sensors, fire proof, shape memory, and biomedical materials.  相似文献   

3.
This review is a comprehensive source for synthesis, functionalization, and physical properties of polymer/carbon nanotube nanocomposites. The effectiveness of processing methods for carbon nanotube reinforcement in matrix for proper dispersion and appropriate interfacial adhesion is discussed. The novelty of polymer/carbon nanotube buckypaper fabrication with preformed networks through microfiltration of nanotube suspension has also been discussed. Moreover, preparation, properties, and manufacturing proficiencies of buckypaper are reviewed. Different approaches of intertwining buckypaper through infiltration, compression, soaking, and dry transfer have been analyzed. The polymer/carbon nanotube buckypaper obtained by vacuum infiltration has micron-scale bicontinuous morphology and improved thermal properties due to effectual heat transfer within nanotube rich phase.  相似文献   

4.
In this review, potential and properties of carbon nanotube, graphite, graphene oxide, and clay nanofiller have been deliberated with reference to aerospace application. The polymers discussed as matrices are polypropylene, polyaniline, polyurethane, polystyrene, and polyamide. Main focus of the review is to converse space competency of polymer/carbon nanotube, polymer/graphite, polymer/graphene oxide, and polymer/clay nanocomposite. The effect of nanofiller addition on the desired aerospace properties of polymeric nanocomposite has been conversed. Attractive features are high glass transition temperature, thermal stability, high modulus, chemical resistance, and nonflammability. Toward the end, challenges in the enhancement of materials’ properties for aerospace relevance have been considered.  相似文献   

5.
In this review, properties and potential of carbon nanotube, nanodiamond, and nanodiamond–carbon nanotube hybrid nanobifiller have been discussed with reference to electromagnetic interference shielding materials. The nanodiamond and carbon nanotube nanofiller and nanodiamond–carbon nanotube nanobifiller have outstanding electrical, thermal, and mechanical features. Main focus of review was electromagnetic interference shielding phenomenon and its implication in polymer/nanodiamond, polymer/carbon nanotube, and polymer/nanodiamond–carbon nanotube nanobifiller composite. The epoxy/nanodiamond, epoxy/carbon nanotube, and epoxy/nanodiamond–carbon nanotube composites have been discussed with electromagnetic interference shielding shielding features. Thus, considerable enhancement in electromagnetic interference shielding shielding features was observed using higher nanodiamond, carbon nanotube, and nanodiamond–carbon nanotube loadings. Significance and future potential of these polymeric composite are specified.  相似文献   

6.
M.M. Zaeri  A. Vahedi 《Carbon》2010,48(13):3916-3930
A combination of molecular structural mechanics and finite element method is used to mechanically model graphene, single-walled and multi-walled carbon nanotubes, nanotube bundles, buckypaper, and buckypaper composites. The mechanical model developed is used to determine the elastic properties of these nanostructures including elastic and shear moduli. In each step, different parameters are investigated including length and orientation of graphene sheets, chirality, diameter, number of walls and length of nanotubes, number of nanotubes in bundles, porosity of buckypaper and alignment of bundles in a buckypaper composite. The results are in good agreement with both the experimental results and those reported by other researchers either experimentally or theoretically.  相似文献   

7.
In this review, an overview of various types of nanofillers is presented with special emphasis on structure, synthesis and properties of carbon nanotube, nanodiamond, and nanobifiller of carbon nanotube/nanodiamond, carbon nanotube/graphene oxide and carbon nanotube/graphene. In addition, polymer/carbon nanotube, polymer/nanodiamond, and polymer/nanobifiller composites have been discussed. The efficacy of different fabrication techniques for nanocomposites (solution casting, in-situ, and melt blending method) and their properties were also discussed in detail. Finally, we have summarized the challenges and future prospects of polymer nanocomposites reinforced with carbon nanofillers hoping to facilitate progress in the emerging area of nanobifiller technology.  相似文献   

8.
To investigate the effect of polymer matrix and nanofiller on interfacial mechanical properties of their resulting nanoreinforced composites, pull-out tests of different nanofillers, such as graphene (GE), graphane (GA) and carbon nanotube (CNT), from various polymer matrix including polyethylene (PE), poly(methyl methacrylate) (PMMA), polytetrafluoroethylene (PTFE) and poly(vinylidene chloride) (PVDC), are simulated using molecular dynamics method (MD). The velocity-load model is applied in MD simulations, and the variation of non-bonding energy (van der Waals interaction), pull force and the average interfacial shear strength (ISS) in the pull-out process are obtained and presented graphically. Under the same mass density, when PE is used as polymer matrix for GE and CNT nanofillers, the resulting nanoreinforced composite possesses the highest non-bonding interfacial energy and the strongest ISS, and the pull force required for pulling out the nanofiller is the largest. For GA nanofiller, the GA-PMMA produces the highest non-bonding interfacial energy and the ISS. With the increase of diameter of CNT, the effect of its reinforcement becomes weak gradually. The chirality of GE does not influence the interfacial mechanical property of GE-reinforced nanocomposite. The (3, 3) CNT nanofiller produces the almost identical interfacial characteristic compared with GE nanofiller. However, when the GA nanofiller is used, the non-bonding energy, pull force and the average ISS of nanocomposite increases by nearly 100%.  相似文献   

9.
In this article, various types of carbon nanofiller and modification of graphene oxide and graphene for the preparation of polymer-based nanocomposites are reviewed. Recently, polymer/graphene and graphene oxide-based materials have attracted tremendous interest due to high performance even at low filler content. The property enhancement is due to the high aspect ratio, high surface area and excellent electrical, thermal and mechanical properties of nanofiller. Different techniques have been employed to fabricate polymer/graphene and graphene oxide nanocomposite with uniform dispersion due to fine matrix/nanofiller interaction. Here we discuss the structure, properties and preparation of these nanocomposites.  相似文献   

10.
Polyacrylonitrile (PAN) is one of the versatile commercially important acrylic polymers. It is a well-known polymer due to its enhanced mechanical, thermal, and chemical properties. Various nanofillers have been incorporated in PAN to significantly improve the mechanical, thermal, and electrical properties of resulting nanocomposite. This review comprehends efforts devoted to PAN-based nanocomposite reinforced with carbon nanotube, graphene, and graphene oxide. The interaction between PAN and carbon nanostructure has been concentrated to develop high-performance nanocomposite. The scientific and technological development in the field of PAN/carbon nanofiller nanocomposite particularly in membranes, biosensor, lithium–sulfur batteries, supercapacitor, and photocatalysts has also been expressed. Moreover, future prospects in scientific and technological disciplines have been addressed.  相似文献   

11.
In this article, a comprehensive review is presented regarding structure, synthesis, and properties of nanofillers such as graphene oxide, nanobifiller of graphene oxide, and their polymeric nanocomposite. The information about hybrid properties and synthesis of graphene oxide–carbon nanotube, graphene oxide–montmorillonite, and graphene oxide–nanodiamond is presented. Use of nanobifiller in polymer/graphene oxide–carbon nanotube, polymer/graphene oxide–montmorillonite, and polymer/graphene oxide–nanodiamond composites was summarized. Area of polymer and graphene oxide-based nanobifiller composites is less studied in literature. Therefore, nanobifiller technology limitations and research challenges must be focused. Polymer/graphene oxide nanobifiller composites have a wide range of unexplored potential in technological areas such as automobile, aerospace, energy, and medical industries.  相似文献   

12.
本文详细介绍近年来问世的无机纳米填料,包括碳纳米管(CNT)、层状氧化石墨(LGO)、纳米蒙脱土(MMT)、多面低聚硅倍半氧烷(POSS)等复合材料的研究进展及阻燃性能特点.分析了当前阻燃聚合物/无机物纳米复合材料基础研究和应用中存在的问题,展望阻燃聚合物/无机物纳米复合材料研究的发展趋势,并讨论了若干阻燃聚合物纳米复合材料的前沿问题.  相似文献   

13.
Qiang Wu  Richard Liang  Ben Wang 《Carbon》2008,46(8):1164-1165
A carbon nanotube membrane (buckypaper) was incorporated onto the surface of a Polyhedral Oligomeric Silsesquioxanes /glass fiber composite by vacuum-assisted resin transfer molding to improve the flame retardancy. The flammability was investigated with a cone calorimeter. With buckypaper on the surface, the heat release rate, peak heat release rate, smoke production rate and CO yield of the composite were decreased dramatically during the combustion.  相似文献   

14.
杨雪松  魏秋芳  张政 《辽宁化工》2014,(9):1176-1178,1182
石墨烯具有独特的物理化学性质,在很多领域都表现出良好的应用前景,得到了日益广泛的关注和研究。本文对石墨烯及其复合材料的制备方法进行了综述,并以石墨烯/量子复合材料、石墨烯/碳纳米管复合材料、石墨烯/Pd复合材料及石墨烯/聚醚砜导电复合材料的制备为例进行具体阐述。  相似文献   

15.
Qiang Wu  Zhiyong Liang  Ben Wang 《Carbon》2010,48(6):1799-13298
Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper were incorporated onto the surface of epoxy carbon fiber composites, as proposed fire shields. Their flammability behaviors were investigated by a cone calorimeter. SWCNT buckypaper and CNF paper did not show notable improvement on fire retardancy. However, MWCNT buckypaper acted as an effective flame-retardant shield, reducing the peak heat release rate by more than 60% and reducing smoke generation by 50% during combustion. The pore structures of buckypapers and CNF paper were characterized by scanning electron microscopy (SEM), mercury intrusion porosimetry, and N2 adsorption isotherms. Gas permeability of buckypaper and carbon nanofiber paper was measured. The correlation between buckypaper and CNF paper properties and their fire retardancy was discussed.  相似文献   

16.
In this article, applications of polymer and graphite-derived nanofiller composite have been presented with special emphasis on epoxy composite. Various types of graphitic nanofillers such as graphite, graphene oxide, graphene, and graphene nanoplatelets are reviewed. Recently, polymer/graphite, polymer/graphene oxide, polymer/graphene, and polymer/graphene nanoplatelet-based materials have gained interest due to high performance. Property enhancement is due to high aspect ratio; high surface area; excellent electrical, thermal, and mechanical properties of nanofillers. The filler dispersion depends upon selection of suitable fabrication technique. We also reported on applications of epoxy/graphite-based filler composites in technical fields such as Li-ion batteries, sensors, and solar cells.  相似文献   

17.
ABSTRACT

This review addresses fundamentals and progress in field of thermally conducting polymer/nanocarbon nanocomposite. Upsurge in thermal conductivity of materials may lead to rapid heat diffusion, which in turn may prevent degradation. Thermally conductive nanofillers (carbon nanotube, graphene, nanodiamond, inorganics) have been effectively employed to form desired nanocomposite. In polymer/nanocarbon nanocomposites, thermal conductivity depends on nanofiller type, dispersion, loading level, polymer nature, morphology, and crystallinity. Thermal conductivity parameter has been significantly considered in aerospace, automotive, electronics, and energy-related industries, where thermal dissipation has become a challenging problem. In future, it is desired to design high performance nanocomposites with manageable thermal conduction.  相似文献   

18.
Graphene/polyvinylidene fluoride (PVDF) composites were prepared using in-situ solvothermal reduction of graphene oxide in the PVDF solution. The electrical conductivity of the composites was greatly improved by doping with graphene sheets. The percolation threshold of such composite was determined to be 0.31 vol.%, being much smaller than that of the composites prepared via blending reduced graphene sheets with polymer matrix. This is attributed to the large aspect ratio of the SRG sheets and their uniform dispersion in the polymer matrix. The dielectric constant of PVDF showed a marked increase from 7 to about 105 with only 0.5 vol.% loading of SRG content. Like the other conductor-insulator systems, the AC conductivity of the system also obeyed the universal dynamic response. In addition, the SRG/PVDF composite shows a much stronger nonlinear conduction behavior than carbon nanotube/nanofiber based polymer composite, owing to intense Zener tunneling between the SRG sheets. The strong electrical nonlinearity provides further support for a homogeneous dispersion of SRG sheets in the polymer matrix.  相似文献   

19.
The large surface area and rich functional groups of a 2D nanostructure, sulfonated graphenal polymer (SGP), provide a new strategy to assist the dispersion of carbon nanotubes (CNTs), far better than the dispersing ability of graphene oxide and sodium dodecyl benzene sulfonate. The efficient codispersion of CNTs and SGP facilitate the fabrication of composite buckypapers with wide‐range tunable fractions of CNT, SGP, and polymer, like poly(vinyl alcohol) (PVA), making it possible to search out the most optimal structure in the fraction space of the constituents. The globally strongest buckypaper is obtained at a CNT:SGP:PVA mass ratio of 7:3:10. Owing to the super hydrophilicity of SGP, and the hydrophilic characteristics of PVA as well, the composite structure can be reassembled with the aid of water, resulting in easy removal of creases and efficient cut heal/repair to broken papers. The healed papers can exhibit about 80% recovery of the tensile strength. Furthermore, just by mechanical stirring, the composite buckypaper can be redissolved in water for a totally green recycling reuse.  相似文献   

20.
The polymer/cement/carbon nanotube composites are known for piezoelectric properties in intelligent structures. Polymers are also used to fulfill deficiencies in carbon nanotube/cement mortars. High-impact polystyrene has replaced sand to enhanced properties like energy consumption, waste disposal, and environmental pollution. Spray-applied fire-resistive material in engineered cementitious composite may overcome drawbacks of conventional brittle composite. Carbon nanotube is used as nanofillers in ordinary Portland cement due to superior mechanical properties. Cementitious polymer/carbon nanotube composite has potential to determine heat-dependent and self-sensing capacity of composites. Smart properties of composites are measured using conductivity measurement. Polymers are also used for making better carbon nanotube dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号