首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yellow-emitting α-SiAlON:Eu2+ phosphors were synthesized by the gas reduction and nitridation of a homogeneous oxide precursor in a CaO–Al2O3–SiO2–Eu2O3 system at 1400–1450 °C using an NH3–CH4 mixture gas as a reduction–nitridation agent. The precursor was prepared by a sol–gel process using a low-cost nitrate, tetraethyl orthosilicate and citric acid as the starting materials. The effects of reaction parameters such as heating rate, temperature, holding time and CH4 content on the composition, microstructure and photoluminescence of the prepared powders were investigated. Nearly single-phase α-SiAlON was successfully synthesized by the one-step gas reduction and nitridation without the need for post-annealing at a higher temperature. The prepared powders consisted of relatively well-dispersed and uniform crystals with a hexagonal shape. The photoluminescence spectra of Eu-doped Ca-α-SiAlON phosphors excited by near-ultraviolet or blue light showed a broad, yellow emission band at 500–700 nm, which agrees well with that obtained from phosphors prepared by the conventional solid-state reaction.  相似文献   

2.
Various silicon nitride materials were fabricated by pressureless sintering using lutetia and alumina as sintering additives. Densification behavior, microstructure, strength and formation of secondary crystalline phases were investigated. The combination of Lu2O3/Al2O3 sintering aids can promote the densification and evolution of a fine grain microstructure of Lu–Al-doped silicon nitride because of the low viscosity of the liquid. The J′ phase given by Lu4Si2−xAlxO7+xN2−x was considered to be secondary crystalline phase at the grain pockets. The composition with a Lu2O3/Al2O3 weight ratio 10/10 had highest strength of 690 ± 50 MPa.  相似文献   

3.
Dense dual Y3+-Yb3+-doped α-SiAlON ceramic containing extra addition of 2 wt.% Y2O3/Yb2O3 was fabricated by hot pressing at 1900 °C for 1 h, and its optical transmittance was investigated over the wavelength range 200-6000 nm. The results showed that the addition of 2 wt.% extra liquid phase could effectively promote Y/Yb-α-SiAlONs densification and its assemblage only consisted of single crystallized α-SiAlON phase. The obtained sample had relatively high infrared light transmittance properties. The maximum transmittance in the medium infrared region for 1.0 mm thick specimen could reach around 72% at ~ 2500 nm. It is attributed to the uniform, dense microstructure and few residual intergranular phases.  相似文献   

4.
Si3N4-TiN composites were prepared by spark plasma sintering (conventional sintering (SPS1) and in situ reaction sintering (SPS2)). Homogeneous distribution of equiaxed TiN grains in Si3N4 matrix results in the highest microhardness (21.7 GPa) and bending strength (621 MPa) of sample SPS1 sintered at 1550 °C. Dispersion of elongated TiN grains in Si3N4 matrix results in the highest fracture toughness (8.39 MPa m1/2) of sample SPS2 sintered at 1300 °C.  相似文献   

5.
Yb2O3 is an efficient sintering additive for enhancing not only thermal conductivity but also the high-temperature mechanical properties of Si3N4 ceramics. Here we report the fabrication of dense Si3N4 ceramics with high thermal conductivity by the gas pressure sintering of α-Si3N4 powder compacts, using only Yb2O3 as an additive, at 1900 °C under a nitrogen pressure of 1 MPa. The effects of Yb2O3 content, sample packing condition and sintering time on the densification, microstructure and thermal conductivity were investigated. Curves of the density plotted against the Yb2O3 content exhibited a characteristic ‘N’ shape with a local minimum at 3 mol% Yb2O3 and nearly complete densification below and above this concentration. The effects of the sample packing condition on the densification, microstructure and thermal conductivity strongly depended on the Yb2O3 content. The embedded condition led to more complete densification but also to a decrease in thermal conductivity from 119 to 94 W m-1 K−1 upon 1 mol% Yb2O3 addition. The sample packing condition had little effect on the density and thermal conductivity (102–106 W m−1 K−1) at 7 mol% Yb2O3. The thermal conductivity value was strongly related to the microstructure.  相似文献   

6.
SrAl2O4: Eu2+, Dy3+ nanometer phosphors were synthesized by detonation method. The particle morphology and optical properties of detonation soot that was heated at different temperatures (600–1100 °C) had been studied systematically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results indicated SrAl2O4: Eu2+, Dy3+ nanometer powders in monoclinic system (a = 8.442, b = 8.822, c = 5.160, β = 93.415) can be synthesized by detonation method, when detonation soot was heated at 600–800 °C. The particle size of SrAl2O4: Eu2+, Dy3+ is 35 ± 15 nm. Compared with the solid-state reaction and sol-gel method, synthesis temperature of the detonation method is lower about 500 and 200 °C respectively. After being excited under UN lights, detonation soot and that heated at 600–1100 °C can emit a green light.  相似文献   

7.
Fully dense titanium carbonitride cermets have been consolidated from Ti(C,N)–Ni–Mo2C–TiAl3 powder mixtures either by spark plasma sintering or hot isostatic pressing techniques. Carbonyl Ni powders enhance the densification of the cermets produced by SPS (spark plasma sintering), a phenomenon likely related to a more efficient dissolution of Mo2C additions and the possible precipitation of α″ phase. Both SPS and HIP (hot isostatic pressing) processes lead to materials with a bimodal Ti(C,N) grain size distribution containing a considerable fraction of nanometric grains. Unlike SPS, HIP induces significant graphite precipitation which could be explained by the destabilization of the carbonitride phase under high isostatic pressures at high temperature. Optimized compositions processed by SPS exhibit a combination of hardness and toughness close to the range covered by ultrafine WC–Co hardmetals of similar binder contents.  相似文献   

8.
The dielectric constant (εr), dielectric loss (tan δ) and strain induced by electric field in lead magnesium niobate–lead titanate (PMN-PT/PMNT) solid solutions in the morphotropic phase boundary (MPB) region at different sintering temperatures have been studied. εr and tan δ increase, whereas Curie phase transition range decreases with the increase in sintering temperature. Strain levels in the range of 0.07–0.2% were obtained. A high saturated strain% 0.19, a high d33 coefficient 320 pm/V and a low strain hysteresis% 3.5 in PMNT 68/32 composition sintered at 1200 °C indicate its suitability for actuator applications.  相似文献   

9.
Si3N4-barium aluminum silicate (BAS) self-reinforced composites have been prepared by pressureless sintering at 1800 °C for 2 h. The β-Si3N4 seeds incorporated in the starting α-Si3N4 powders encouraged the α- to β-Si3N4 phase transformation, and the final bimodal microstructure with large grains, consequently, led to the improvement of the fracture toughness, from 7.74 to 8.34 MPa m1/2. The almost-complete crystallized BAS benefited the high-temperature mechanical properties. The residual stress, crack deflection, grain bridging, and pullout were considered as the major toughening mechanisms in this composite.  相似文献   

10.
An ultra-high-temperature HfB2–SiC composite was successfully consolidated by spark plasma sintering. The powder mixture of HfB2 + 30 vol.% β-SiC was brought to full density without any deliberate addition of sintering aids, and applying the following conditions: 2100 °C peak temperature, 100 °C min−1 heating rate, 2 min dwell time, and 30 MPa applied pressure. The microstructure consisted of regular diboride grains (2 μm mean size) and SiC particulates evenly distributed intergranularly. The only secondary phase was monoclinic HfO2. The incorporated SiC particulates played a key role in enhancing the sinterability of HfB2. Flexural strength at 25 °C and 1500 °C in ambient air was 590 ± 50 and 600 ± 15 MPa, respectively. Fracture toughness at room temperature (RT) (3.9 ± 0.3 MPa √m) did not decrease at 1500 °C (4.0 ± 0.1 MPa √m). Grain boundaries depleted of secondary phases were fundamental for the retention of strength and fracture toughness at high temperature. The thermal shock resistance, evaluated through the water-quenching method, was 500 °C.  相似文献   

11.
The effects of ZnO addition on the microstructures and microwave dielectric properties of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics were investigated. ZnO was selected as liquid phase sintering aids to lower the sintering temperature of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics. With ZnO additives, the densification temperature of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 can be effectively reduced from 1450 to 1200–1325 °C. The crystalline phase exhibited no phase difference at low addition levels (0.25–2 wt.%). It is found that low-level doping of ZnO (0.25–2 wt.%) can significantly improve the density and dielectric properties of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics. The quality factors Q × f were strongly dependent upon the amount of additives. Q × f values of 36 000 and 13 000 GHz could be obtained at 1200–1325 °C with 1 and 2 wt.% ZnO additives, respectively. During all additives ranges, the relative dielectric constants were significantly different and ranged from 23.1 to 27.96. The temperature coefficient varies from 14.1–24.3 ppm/°C.  相似文献   

12.
LaNiO3 (LNO) thin films were deposited on (1 0 0) MgO, SrTiO3 (STO) and LaAlO3 (LAO) crystal substrates by pulsed laser deposition (PLD) under 20 Pa oxygen pressure at different substrate temperatures from 450 to 750 °C. X-ray diffraction (XRD), ex situ reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM) were employed to characterize the crystal structure of LNO films. LNO films deposited on STO and LAO at a temperature range from 450 to 700 °C exhibit high (0 0 l) orientation. XRD ψ scans and RHEED observations indicate that LNO films could be epitaxially grown on these two substrates with cubic-on-cubic arrangement at a wide temperature range. LNO films deposited at 700 °C on MgO (1 0 0) substrate have the (l l 0) orientation, which was identified to be bicrystalline epitaxial growth. La2NiO4 phase appears in LNO films deposited at 750 °C on three substrates. The epitaxial LNO films were tested to be good metallic conductive layers by four-probe method.  相似文献   

13.
The dielectric properties at microwave frequencies and the microstructures of nano (α + θ)-Al2O3 ceramics were investigated. Using the high-purity nano (α + θ)-Al2O3 powders can effectively increase the value of the quality factor and lower the sintering temperature of the ceramic samples. Grain growth can be limited with θ-phase Al2O3 addition and high-density alumina ceramics can be obtained with smaller grain size comparing to pure α-Al2O3. Relative density of sintered samples can be as high as 99.49% at 1400 °C for 8 h. The unloaded quality factors Q × f are strongly dependent on the sintering time. Further improvement of the Q × f value can be achieved by extending the sintering time to 8 h. A dielectric constant (r) of 10, a high Q × f value of 634,000 GHz (measured at 14 GHz) and a temperature coefficient of resonant frequency (τf) of −39.88 ppm/°C were obtained for specimen sintered at 1400 °C for 8 h. Sintered ceramic samples were also characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

14.
The B2O3-doped 5Li2O–1Nb2O5–5TiO2 composite microwave dielectric ceramics prepared by conventional and low-temperature single-step reactive sintering processes were investigated in the study. Without any calcinations involved, the Nb2O5 mixture of Li2CO3 and TiO2 was pressed and sintered directly in the reactive sintering process. More uniform and finer grains could be obtained in the 5Li2O–1Nb2O5–5TiO2 ceramics by reactive sintering process, which could effectively save energy and manufacturing cost. And relatively good microwave dielectric properties of r = 41, Q × f = 9885 GHz and τf = 43.6 ppm/°C could be obtained for the 1 wt.% B2O3-doped ceramics reactively sintered at 900 °C.  相似文献   

15.
In order to prepare a structural/functional material with not only higher mechanical properties but also lower dielectric constant and dielectric loss, a novel process combining oxidation-bonding with sol–gel infiltration-sintering was developed to fabricate a porous Si3N4–SiO2 composite ceramic. By choosing 1250 °C as the oxidation-bonding temperature, the crystallization of oxidation-derived silica was prevented. Sol–gel infiltration and sintering process resulted in an increase of density and the formation of well-distributed micro-pores with both uniform pore size and smooth pore wall, which made the porous Si3N4–SiO2 composite ceramic show both good mechanical and dielectric properties. The ceramic with a porosity of 23.9% attained a flexural strength of 120 MPa, a Vickers hardness of 4.1 GPa, a fracture toughness of 1.4 MPa m1/2, and a dielectric constant of 3.80 with a dielectric loss of 3.11 × 10−3 at a resonant frequency of 14 GHz.  相似文献   

16.
Short-carbon-fiber-reinforced silicon carbide composites were prepared by hot-pressing with SiC powder, Polycarbosilane as precursor polymer and MgO–Al2O3–Y2O3 as sintering additives. The phase composition, microstructure and mechanical properties of the composites with different Polycarbosilane content were investigated. The results showed that, dense composites could be prepared at a relatively low temperature of 1800 °C via the liquid-phase-sintering mechanism and the highest mechanical property was obtained for the composites with 20 wt.% PCS and 8 wt.% sintering additives. The amorphous interphase formed during sintering process in the composites not only contributed to the densification of the composites, but also improved the fiber–matrix bonding. The nano-silicon carbide derived from Polycarbosilane, could also play a role of improving the relative density of the composites.  相似文献   

17.
The sintering behavior and dielectric properties for perovskite Ag(Nb0.8Ta0.2)O3 ceramic with Sb2O5 doping was explored. A small amount of Sb2O5 (2.5 wt.%) led to high densification at temperatures < 1060 °C. The dielectric constant increased and the temperature coefficient decreased with increasing concentration of Sb2O5, and the dielectric constant reached 673, combined with a low temperature coefficient of 147 ppm/°C, and dielectric loss of 0.0044 (at 1 MHz) for the sample with 3.5 wt.% Sb2O5 sintered at 1080 °C.  相似文献   

18.
A multiphase model for Ti–6Al–4V is proposed. This material is widely used in industrial applications and so needs accurate behaviour modeling. Tests have been performed in the temperature range from 25 °C to 1020 °C and at strain rates between 10−3 s−1 and 1 s−1. This allowed the identification of a multiphase mechanical model coupled with a metallurgical model. The behaviour of each phase is calibrated by solving an inverse problem including a phase transformation model and a mechanical model to simulate tests under thermomechanical loadings. A scale transition rule (β-rule) is proposed in order to represent the redistribution of local stresses linked to the heterogeneity of plastic strain. Finally this model is applied to two laser assisted processes: direct laser fabrication and laser welding.  相似文献   

19.
The influence of the molar ratio of Al2O3 to Y2O3 (i.e. MAl2O3/MY2O3) on sintering densification, microstructure and the mechanical properties of a SiC–Al2O3–Y2O3 ceramic composite were studied. It was shown that the optimal value of MAl2O3/MY2O3 was 3/2, not 5/3, which is customarily considered the optimal molar ratio for the formation of YAG (Y3Al5O12) phase. When MAl2O3/MY2O3 is 5/3, materials existed in two phases of YAG and very little YAM phases. The sintering mechanism of the solid phase occurred at 1850 °C. When MAl2O3/MY2O3 was 3/2, materials existed in the two phases YAG (Y3Al5O12) and YAM (Y4Al2O9). The formation of the low melting point eutectic liquid phase (YAG + YAM) increased sintering densification. Flexure strength, hardness and relative density were all higher.  相似文献   

20.
BSCF hollow fiber membranes possessing an asymmetric layered structure were prepared using a modified phase inversion process followed by subsequent sintering at temperatures from 1100 to 1175 °C. The fibers were characterized by SEM, and tested for air separation at ambient pressure and temperatures between 650 and 950 °C. Although the prepared hollow fibers resulted in self-supported asymmetric substrate with a very thin densified perovskite layer for mixed conduction, O2 permeation was controlled by surface O2 exchange kinetics rather than bulk diffusion. In order to improve O2 flux, surface modification was carried out by the attachment of Pt particles on the surface of the hollow fiber. The maximum O2 flux measured for pure perovskite hollow fiber was 0.0268 mol m−2 s−1 at 950 °C whilst O2 fluxes increased up to 25% after the surface modification using Pt micro-particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号