首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The In0.05Ga0.95N/GaN, In0.05Ga0.95N/Al0.1Ga0.9N, and In0.05Ga0.95N/Al0.18Ga0.82N multiple-quantum well (MQW) light-emitting diodes (LEDs) were prepared by metal-organic chemical-vapor deposition. (MOCVD). It was found that the 20-mA electroluminescence (EL) intensity of the InGaN/Al0.1Ga0.9N MQW LED was two times larger than that of the InGaN/GaN MQW LED. The larger maximum-output intensity and the fact that maximum-output intensity occurred at a larger injection current suggest that Al0.1Ga0.9N-barrier layers can provide a better carrier confinement and effectively reduce leakage current. In contrast, the EL intensity of the InGaN/Al0.18Ga0.82N MQW LED was smaller because of the relaxation that occurred in the MQW active region of the sample.  相似文献   

2.
Nitride-based cascade near white light-emitting diodes   总被引:5,自引:0,他引:5  
An InGaN-GaN blue light-emitting diode (LED) structure and an InGaN-GaN green LED structure were grown sequentially onto the same sapphire substrate so as to achieve a nitride-based near white LED. In order to avoid thyristor effect, we choose a large 2.1×2.1 mm2 LED chip size, which was six times larger than that of the normal LED. It was found that we could observe a near white light emission with Commission International de l'Eclairage color coordinates x=0.2 and y=0.3, when the injection current was lower than 200 mA. It was also found that the output power, luminous efficiency and color temperature of such a cascade near white LED were 4.2 mW, 81 l m/W, and 9000 K, respectively  相似文献   

3.
High-quality InGaN/GaN multiple-quantum well (MQW) light-emitting diode (LED) structures were prepared by a temperature-ramping method during metal-organic chemical-vapor deposition (MOCVD) growth. Two photoluminescence (PL) peaks, one originating from well-sensitive emission and one originating from an InGaN quasi-wetting layer on the GaN-barrier surface, were observed at room temperature (RT). The observation of high-order double-crystal x-ray diffraction (DCXRD) satellite peaks indicates that the interfaces between InGaN-well layers and GaN-barrier layers were not degraded as we increased the growth temperature of the GaN-barrier layers. With a 20-mA and 160-mA current injection, it was found that the output power could reach 2.2 mW and 8.9 mW, respectively. Furthermore, it was found that the reliability of the fabricated green LEDs prepared by temperature ramping was also reasonably good.  相似文献   

4.
Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts   总被引:1,自引:0,他引:1  
The optical and electrical properties of Ni(5 nm)-Au(5 nm) and Ni(3.5 nm)-indium tin oxide (ITO) (60 nm) films were studied. It was found that the normalized transmittance of Ni/ITO film could reach 87% at 470 nm, which was much larger than that of the Ni-Au film. It was also found that the specific contact resistance was 5 /spl times/ 10/sup -4/ /spl Omega/ /spl middot/ cm/sup 2/ and 1 /spl times/ 10/sup -3/ /spl Omega/ /spl middot/ cm/sup 2/, respectively, for Ni-Au and Ni/ITO on p-GaN. Furthermore, it was found that the 20 mA output power of light-emitting diode (LED) with Ni-Au p-contact layer was 5.26 mW. In contrast, the output power could reach 6.59 mW for the LED with Ni/ITO p-contact layer.  相似文献   

5.
We obtained 1 μm crack-free AlGaN layers up to an AlN molar fraction of 0.4 by growing directly on low-temperature-deposited buffer layers. The buffer layer is effective for growing AlGaN layers without the stress caused by the lattice mismatch. We also demonstrated nitride-based laser diodes with such a 1 μm crack-free n-AlGaN cladding layer/n-AlGaN contact layer/low-temperature-deposited buffer layer/sapphire structure, which showed a clear single spot in a far field pattern. The AlGaN-based structure can suppress optical leakage from the waveguide region to the underlying layer. The threshold current of the laser diode is about 230 mA, which is comparable to or better than that of our laser diodes with the conventional GaN-based structure.  相似文献   

6.
The 410-nm near-ultraviolet (near-UV) InGaN-GaN multiple quantum-wells light-emitting diodes (LEDs) with low-pressure-grown (200 mbar) and high-pressure-grown (400 mbar) Si-doped GaN underlying layers were grown on c-face sapphire substrates by metal-organic vapor phase epitaxy. Increasing the growth pressure during the initial growth of the underlying n-type GaN epilayers of the near-UV InGaN-GaN LEDs was found to reduce the amount of threading dislocations that originated from the GaN-sapphire interfaces. The electroluminescence intensity of LEDs with underlying GaN layers grown at a higher pressure was nearly five times larger than that of LED with layers grown at lower pressure. Additionally, two-order reduction of leakage current was also induced for the LEDs grown at a higher pressure.  相似文献   

7.
韩国Kwangju理工学院光电子材料中心和材料科学工程系利用相分离InGaN有源层,无需添加荧光材料,制造出了白光发光二极管。这种二极管的白光发射归因于分离相InGaN三元合金中铟组分和类量子点富铟区域尺寸的宽分布。  相似文献   

8.
Correlation between material properties of bulk p-GaN layers grown on undoped GaN and device performance of InGaN/GaN blue light-emitting diodes (LEDs) as a function of p-GaN growth temperature were investigated. The p-GaN layers of both structures grown by metal-organic chemical-vapor deposition were heavily doped with Mg. As the growth temperature of the bulk p-GaN layer increased up to 1,080°C, NA-ND increased. However, above 1,110°C, NA-ND sharply decreased, while the fluctuation of Mg concentration ([Mg]) increased. At this time, a peculiar surface, which originated from inversion domain boundaries (IDBs), was clearly observed in the bulk p-GaN layer. The IDBs were not found in all LEDs because the p-GaN contact layer was relatively thin. The change in photoluminescence emission from the ultraviolet band to blue band is found to be associated with the fluctuation of [Mg] and IDBs in bulk p-GaN layers. The LED operating voltage and reverse voltage improved gradually up to the p-GaN contact-layer growth temperature of 1,080°C. However, the high growth temperature of 1,110°C, which could favor the formation of IDBs in the bulk p-GaN layer, yielded poorer reverse voltage and saturated output power of the LEDs.  相似文献   

9.
Industrialized white organic light-emitting diodes (OLEDs) currently require host-guest doping, a complicated process necessitating precise control of the guest concentration to get high efficiency and stability. Two doping-free, hybrid white OLEDs with fluorescent blue, and phosphorescent green and red emissive layers (EMLs) are reported in this work. An ultra-thin red phosphorescent EML was situated in a blue-emitting electron transport layer (ETL), while the ultra-thin green phosphorescent EML was placed either in the ETL (Device 1), or the hole transport layer (HTL) (Device 2). Device 2 exhibits higher efficiency and more stable spectrum due to the enhanced utilization of excitons by ultra-thin green EML at the exciton generation zone within the HTL. Values of current efficiency (CE), power efficiency (PE), and CRI obtained for the optimized hybrid white OLEDs fabricated through a doping-free process were of 23.2 cd/A, 20.5 lm/W and 82 at 1000 cd/m2, respectively.  相似文献   

10.
Fluoropolymers are characterized by high chemical inertness and, when in solid state, by superficial dipoles due to the C–F bond where the charge density is strongly displaced. These two characteristics are exploited here for fine control of charge balance in organic light-emitting devices and for preventing electrochemical interaction between heterogeneous layers. The insertion of a thin layer of polytetrafluoroethylene, PTFE, at the interface between poly(ethylene dioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, and an electroluminescent polymer leads to improved device efficiency and longevity. The presence of the superficial dipole increases the effective work function of the anode and improves the charge balance which enhances the external quantum efficiency, EQE, of the devices by up to a factor of two without significant effects on the luminance levels. The insertion of the PTFE layer reduces the photoluminescence quenching at the PEDOT:PSS/polymer interface, however we show that the EQE enhancement is mainly due to a better confinement of minority carrier electrons in the active layer. The lifetime of the devices shows a remarkable increase correlated with the insertion of the PTFE layer. Such improvements are ascribed to the reduced electrochemical interaction between the electroluminescent polymer and PEDOT:PSS due to the chemically inert nature of PTFE. The PTFE acts as a chemical zipper of two heterogeneous media with the added functionality of control over the charge balance.  相似文献   

11.
Temperature-dependent light-emitting characteristics of InGaN/GaN diodes   总被引:1,自引:0,他引:1  
Temperature-dependent light-emitting and current-voltage characteristics of multiple-quantum well (MQW) InGaN/GaN blue LEDs were measured for temperature ranging from 100 to 500 K. The measurement results revealed two kinds of defects that have pronounced impact on the electroluminescent (EL) intensity and device reliability of the LEDs. At low-temperature (<150 K), in addition to the carrier freezing effect, shallow defects such as nitrogen vacancies or oxygen in nitrogen sites can trap the injected carriers and reduces the EL intensity. At high temperature (>300 K), deep traps due to the structure dislocations at the interfaces significantly reduce the efficiency for radiative recombination though they can enhance both forward and reverse currents significantly. In addition, the significant enhancement of trap-assisted tunneling current causes a large heat dissipation and results in a large redshift of the emission peak at high temperature.  相似文献   

12.
Highly efficient green phosphorescent organic light-emitting diodes (PHOLEDs) with low efficiency roll-off at high brightness have been demonstrated with a novel iridium complex. The host material 1,3-bis(carbazol-9-yl)benzene (mCP) with high triplet energy is also used as the hole transporting layer to avoid carrier accumulation near the exciton formation interface and reduce exciton quenching. It provides a new approach for easily fabricating PHOLED with high triplet energy emitter. Moreover, the hole blocking layer is extended into the light emitting layer to form a co-host, realizing better control of the carrier balance and broader recombination zone. As a consequence, a maximum external quantum efficiency of 20.8% and current efficiency of 72.9 cd/A have been achieved, and maintain to 17.4% and 60.7 cd/A even at 10,000 cd/m2, respectively.  相似文献   

13.
在这篇论文里,我们通过在InGaN/GaN 多量子阱和n型氮化镓层中间插入一层低温生长的n型氮化镓显著提高了LED的抗静电能力。通过引入低温生长的氮化镓插入层使得LED抗击穿电压超过4000V的良品率从9.9%提升到74.7%。低温生长的氮化镓插入层作为后续生长的多量子阱的缓冲层,释放了量子阱中的应力并且改善了量子阱的界面质量。另外,我们证明了在氮气气氛下生长低温氮化镓插入层对于LED抗静电能力的改善要强于氢气气氛,同时也进一步证明低温插入层对量子阱中应力的释放有利于提高LED的抗静电能力。光电测试结果表明,在引入低温nGaN缓冲层后,LED的电学特性并没有衰退,并且LED的光输出功率提高了13.9%。  相似文献   

14.
By means of refractive index gradually changed coupling layers, a highly efficient green top-emitting OLED (TOLED) with enhanced light coupling efficiency and stable colors over angles has been realized. The refractive index transition of the coupling layers including the doping layer smoothes light extraction from the semitransparent cathode metal to the air, which is the reason for the enhancement of light coupling efficiency. The doping layer in the coupling layers also acts as a microparticle diffuser to eliminate the shift in EL spectra with viewing angles. A universal simulation has also been carried out, and the result suggests that the light coupling efficiency will be enhanced further if the refractive index transition of the coupling layers is continuous.  相似文献   

15.
Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq3) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L’Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages. The maximum power efficiency, current efficiency and quantum efficiency reach 15.9 lm/W, 20.8 cd/A and 8.4%, respectively. The power efficiency at brightness of 500 cd/m2 still arrives at 7.9 lm/W, and the half-lifetime under the initial luminance of 500 cd/m2 is over 3500 h.  相似文献   

16.
We demonstrate the cost-effective fabrication of organic light-emitting diodes (OLEDs) using a sputter-patterned indium–tin-oxide (ITO). This scheme brings in a leakage current on the slope of the sputter-patterned ITO edges due to spike-like surface. To suppress it, we place thermally evaporated organic insulating molecules right on the ITO edges for preventing hole leakage, just below the aluminum (Al) cathode for blocking electron leakage, or both on the ITO edges and below the Al cathode. It is demonstrated that blocking off both hole- and electron-leak pathways (via the spikes) is highly desired to enhance the current efficiency and lifetime of the sputter-patterned ITO-based OLEDs.  相似文献   

17.
We present a comparative study on temperature dependence of electroluminescence (EL) of InGaN/GaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with identical structure but different indium contents in the active region. For the ultraviolet (UV) and blue LEDs, the EL intensity decreases dramatically with decreasing temperature after reaching a maximum at 150 K. The peak energy exhibits a large redshift in the range of 20–50 meV with a decrease of temperature from 200 K to 70 K, accompanying the appearance of longitudinal-optical (LO) phonon replicas broadening the low energy side of the EL spectra. This redshift is explained by carrier relaxation into lower energy states, leading to dominant radiative recombination at localized states. In contrast, the peak energy of the green LED exhibits a minimal temperature-induced shift, and the emission intensity increases monotonically with decreasing temperature down to 5 K. We attribute the different temperature dependences of the EL to different degrees of the localization effects in the MQW regions of the LEDs.  相似文献   

18.
By dispersing an electron transporting molecular dopant into the active semiconducting luminescent polymer, we have achieved improved efficiencies for green light-emitting diodes (LEDs). These green emitting LEDs were fabricated by adding an electron transporting molecular dopant, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-l,3,4-oxadiazole (PBD), into the semiconducting luminescent polymer as the emitting layer in the polymer LEDs. The devices used poly(2-cholestanoxy-5-thexyldimethylsilyl-l,4-phenylene vinylene) (CS-PPV), a new soluble green light emitter, as the semiconducting luminescent polymer and either aluminum or indium as the electron injection electrodes. Quantum efficiencies of LEDs with the electron transporting molecular additive in the luminescent polymer and an Al electrode are about 0.3% photons per electron, better by a factor of 18 than similar devices made without the addition of the electron transport molecular dopant; quantum efficiencies of similar LEDs fabricated with an In electrode are 0.23% photons per electron, better by a factor of 16 than devices without the electron transport molecular additive.  相似文献   

19.
由SiO2/TiO2分布布拉格反射镜(DBR)和Al镜组成的混合式反射电流阻挡层用于提高InGaN/GaN发光二极管的光输出功率。混合式反射电流阻挡层不仅增强了电流扩展效应而且有效的将射向p金属电极的光子反射防止其对p电极焊点附近光子的吸收。实验结果表明,淀积在p-GaN上1.5个周期的SiO2/TiO2DBR和Al镜在455nm垂直入射时的反射率高达97.8%。在20mA的工作电流下,与没有电流阻挡层的发光二极管相比,生长1.5对SiO2/TiO2 DBR和Al镜作为电流阻挡层的发光二极管的光输出功率提高了12.5%,且光输出功率的分布更加均匀。  相似文献   

20.
This study demonstrated AlGaN/GaN Schottky barrier diodes (SBDs) for use in high-frequency, high-power, and high-temperature electronics applications. Four structures with various Fe doping concentrations in the buffer layers were investigated to suppress the leakage current and improve the breakdown voltage. The fabricated SBD with an Fe-doped AlGaN buffer layer of 8 × 1017 cm 3 realized the highest on-resistance (RON) and turn-on voltage (VON) because of the memory effect of Fe diffusion. The optimal device was the SBD with an Fe-doped buffer layer of 7 × 1017 cm 3, which exhibited a RON of 31.6 mΩ-cm2, a VON of 1.2 V, a breakdown voltage of 803 V, and a buffer breakdown voltage of 758 V. Additionally, the low-frequency noise decreased when the Fe doping concentration in the buffer layer was increased. This was because the electron density in the channel exhibited the same trend as that of the Fe doping concentration in the buffer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号