首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed 10 H-chondrites for 20 trace elements, using RNAA. The meteorites included 4 of petrologic type 4 and 2 each of types 3, 5 and 6.The data show that H-chondrites are not isochemical. H3's are depleted by some 10% not only in Fe (Dodd, 1976), but also in the siderophiles Os, Re, Ir, Ni, Pd, Au, and Ge. Moreover, the abundance pattern of siderophiles varies systematically with petrologic type. As similar fractionations of REE have been observed by Nakamura (1974), it appears that both the proportions and compositions of the main nebular condensates varied slightly during accretion of the H-chondrites. Thus the higher petrologic types are independent nebular products, not metamorphosed descendants of lower petrologic types.Abundances of highly volatile elements (Cs, Br, Bi, Tl, In, Cd, Ar36) correlate with petrologic type, declining by ≤ 10?3 from Type 3 to Type 6. The trends differ from those for artificially heated Type 3's (Ikramuddinet al., 1977b; Herzoget al., 1979), but agree passably with theoretical curves for nebular condensation. Apparently the low volatile contents of higher petrologic types are a primary feature, not the result of metamorphic loss.The mineralogy of chondrites suggests that they accreted between 405 K (absence of Fe3O4) and 560 K (presence of FeS), and the abundances of Tl, Bi, and In further restrict this interval to 420–500 K. Accretion at 1070 ± 100 K, as proposed by Hutchisonet al. (1979, 1980), leads to some extraordinary problems. Volatiles must be injected into the parent body after cooling, which requires permeation of the body by 1011 times its volume of nebular gas. This process must also achieve a uniform distribution of the less volatile elements (Rb, Cu, Ag, Zn, Ga, Ge, Sn, Sb, Se, F), without freezeout in the colder outer layers.Factor analysis of our data shows 3 groupings: siderophiles (Os, Re, Ir, Ni, Pd, Au, and Ge), volatiles (Ag, Br, In, Cd, Bi, and Tl) and alkalis (Rb and Cs). The remaining 5 elements (U, Zn, Te, Se, and Sb) remain unassociated.  相似文献   

2.
Carbonaceous vein separates from Kenna and Haverö, as well as bulk Kenna, were analyzed by RNAA for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Pd, Os, Rb, Re, Sb, Se, Te, Tl. U, and Zn. The data are reviewed together with four earlier Chicago analyses of bulk ureilites. Linear regressions confirm the presence of two metal components, with the following Cl-normalized ratios: Ir/Ni = 14.6, ≤ 1; Ge/Ni = 5.4, 2.4; Au/Ni = 2.3, 0.9. The high-Ir component is enriched in vein separates and hence belongs to veins; the lowIr component belongs to the ultramafic rock. Vein material is enriched in all elements analyzed by us except Zn, and accounts for most of the C, noble gases, and presumably siderophiles in the meteorite. Most of the properties of ureilites apparently can be explained by the cumulate model of Berkley et al. (1980), with certain modifications. Comparison of ureilites with three other ultramafic rocks from different planets (Earth's mantle, lunar dunite, and Chassigny) suggests that the ureilite parent body had a primitive chondritic composition, similar to C3V chondrites but richer in metal and carbon. It melted, causing depletion of incompatibles to a mean abundance of ~0.02 × Cl and incomplete segregation of metal, FeS, and C. Fractional crystallization or melting of metal in the presence of S and C apparently can explain the fractionations of Ir, Re, Ni, Au, and perhaps Ge, obviating the need for extraneous sources of vein metal or unusual parent-body compositions. Noble gases from the parent material may have been retrapped in carbon during magmatism, provided the system was closed.  相似文献   

3.
We have analyzed by RNAA 3 EH and 3 EL chondrites for 20 trace elements. Interelement correlations were examined visually and by factor analysis, to assess the effects of nebular fractionation and metamorphism.Refractory siderophiles (Ir, Os, Re) correlate with “normal siderophiles” (Ni, Pd, Au, Sb, and Ge) in EL's but not EH's; presumably these two element groups originally condensed on separate phases (CAI and metal), but then concentrated in metal during metamorphism. Sb and Ge are more depleted than the other three elements of the “normal” group, presumably by volatilization during chondrule formation.Volatiles are consistently more depleted in EL's than EH's, by factors >10× for the more volatile elements. Some of the stronger correlations are found for In-Tl, Tl-Bi, and Zn-Cd-In. These correlations are about equally consistent with predicted condensation curves for the solar nebula (especially for host phases with negative heats of solution, or for P = 0.1?1 atm) and with volatilization curves for artificially heated Abee, as determined by M E. Lipschutz and coworkers at Purdue. No decisive test between these alternatives is available at present, but the close correlation of Zn, Cd, In may eventually provide a crucial test.Factor analysis shows that 3 factors account for 93% of the variance; they seem to reflect volatile (F1), siderophile (F2), and chalcophile (F3) behavior. The element groupings agree largely with those recognized visually; they are listed with the inferred host phases. F1 (minor sulfide, probably ZnS): Zn, Cd, In, Br; F2 (CAI, later metal): Ir, Os. Re; F1, F2 (metal): Ni, Pd, Au, Ge, Sb; F3, F1 (FeS): Se, Te, Bi, Tl. These correlations differ to some extent from those obtained by Shaw (1974) in an earlier factor analysis, presumably because the new data are more homogeneous and extensive, especially for siderophiles. The new correlations also show that the cosmochemical behavior of some volatiles in E-chondrites differs from that predicted for ordinary chondrites, so that condensation curves for the latter are not strictly applicable.  相似文献   

4.
The abundances of Sc, rare earths, Zr, Hf, Ta and Th were determined in five New England granitic plutons. Similar data are reported for separated minerals from three of the units. The granites can be divided into the Massachusetts alkaline group (Cape Ann, Peabody, Quincy) and the Rhode Island subalkaline group (Narragansett Pier, Westerly).Analyses for three samples from each pluton indicate that the Westerly granite is heterogeneous in both major and trace elements. Th abundances vary considerably (factor of 2) in both Rhode Island granites. Zr and Hf are heterogeneously distributed in all the granites while the rare earths are more homogeneous (< ± 20% deviation from mean).Eu depletions in all the granites imply that feldspar was involved either as a cumulate during fractional crystallization or as a residual phase during anatexis. Because the Massachusetts granites are associated with syenites and show evidence for low water fugacity and denser rocks at depth, these granites probably developed from basic magmas as a result of extensive feldspar crystallization.Depletion of Tb, Dy, Yb, Lu, Zr, Hf and Ta in the Rhode Island granites suggest participation of zircon or garnet as residues of partial melting or as crystal cumulates. These granites crystallized under nearly water saturated conditions and are characterized by abundant pegmatites. The presence of a water rich phase may also have been important in the depletion of elements which form stable complexes in aqueous solutions.  相似文献   

5.
This work presents new trace element and petrographic data for three forsterite-bearing, Ca-Alrich inclusions from the Allende meteorite: TE, 818a, and 110-A. Such inclusions form a continuum with Type B1 and B2 Ca-Al-rich inclusions (CAIs), and we refer to them as “Type B3” CAIs. Textures, mineral chemistries, crystal-chemically fractionated REE patterns, and other properties suggest that Type B3 crystallized from partly molten evaporative residues. The concentrations of refractory lithophile elements are lower than in Type B1 and Type B2, in approximately inverse proportion to the higher concentrations of Mg and Si in the Type B3's. The refractory trace element abundances of the forsterite-bearing, isotopically anomalous FUN CAIs TE and CG14 suggest that they formed at higher temperatures and under more oxidizing conditions than other Type B CAIs, thus strengthening the previously observed link between relatively oxidized CAI compositions and FUN properties.We also present evidence that 818a was strongly re-heated and modified in the nebula after its initial crystallization: it consists of a core of coarse-grained Ti-Al-pyroxene (Tpx), forsterite, spinel and metal grains and a thick, surrounding mantle of melilite that has been almost totally converted to fine-grained alteration products. In the core, the mean concentrations of refractory lithophiles and siderophiles are similar (both ~ 14 × CI), but in the mantle, the refractory siderophiles are a factor of 2 lower (~ 9 × CI) than the refractory lithophiles (~18 × CI). Because the core and mantle display similar, mineralogically-fractionated REE patterns (both sloping up from La to Lu), the pre-alteration mantle could not have formed during fractional crystallization of the primary CAI nor as a later condensate over the core. A 3-stage formation process is required for 818a: (1) crystallization of the primary CAI rich in Tpx throughout; (2) re-heating and partial volatilization of Mg and Si from the outer portion of the CAI, causing an increase in the concentration of refractory lithophiles, a loss of siderophiles, and converting Tpx to melilite; (3) metasomatic alteration of the melilite-rich mantle.  相似文献   

6.
The distribution of Ba, Rb and Sr during crystallization of a granitic melt is examined in a number of theoretical models. The modes of crystallization considered are perfect fractional crystallization, perfect equilibrium crystallization, and an intermediate mode, incremental equilibrium crystallization. The effect of the degree of separation of cumulus minerals from melt during crystallization is also considered. Perfect fractional and incremental equilibrium crystallization (with small increments) are broadly similar, but differ in the final stages of crystallization in that the latter mode defines a finite trace element composition for the last solid. The effect of intercumulus melt in both modes of crystallization imparts a ‘liquid’ character to the solids, and suppresses the degree of enrichment of Rb and depletion of Ba and Sr in late solids and melts.Examination of trace element data for the Acid Phase of the Bushveld Igneous Complex in the light of these models suggests that these granites represent a suite of cumulate rocks, containing relatively large amounts of intercumulus melt.  相似文献   

7.
Kimberlite magmas from the Kimberley area of South Africa have sampled two main types of phlogopite-rich mafic xenoliths which represent deep mantle segregations from highly alkaline melts. The first group corresponds to the MARID rocks characterised by the mineral association mica (phlogopite)-amphibole (K-richterite)-rutile-ilmenite-clinopyroxene and the second group consists of the PIC rocks characterised by the mineral association mica (phlogopite)-ilmenite-clinopyroxene-minor rutile. The two groups are clearly distinguished from one another by their mineral paragenesis, by the major element composition of their phlogopite and ilmenite, by the trace element content of their clinopyroxene and by their clinopyroxene and whole rock Sr and Nd isotope ratios. The combined major and trace element variations are interpreted to indicate a genetic relationship between the PIC rocks and group I kimberlite magma, and between the MARID rocks and group II kimberlite magma. The two types of parental melts percolated through, and metasomatised, the upper mantle beneath the Kimberley area as indicated by the trace element characteristics of the clinopyroxenes of the studied phlogopite-bearing peridotites.  相似文献   

8.
Olivine phenocrysts in ugandite and leucite basanite from the western branch of the East African Rift have been analysed for up to 34 trace elements by Laser-ICP-MS with detection limits as low as 1 ppb. A combination of point analyses with varying ablation crater diameters and line scans allow the identification of subtle zonations from core to rim, as well as characterization of the chemical effects of contamination along cracks. Trace element concentrations are remarkably uniform between large and small phenocrysts; fractionated leucite basanites (Mg# 59) have higher D Ca and D Al, and less fractionated LREE/HREE than MgO-rich ugandites (Mg# 75–80). Minor zonation is seen in elements with cation charges from 5+ to 2+ (P, Ti, Zr, Cr, Al, Sc, V, Cu, Mn, Ni) and show correlation between Ti and Al, but not P. Early phenocryst cores with high Li or Ni, low Mn, or enrichments in many trace elements can be identified, whereas xenocrysts have exceptionally low Na, Cr, Ti, V and Co. Partition coefficients for Ni are 31–35, less than in lamproites, with which they demonstrate an approximately linear correlation with K2O content, K2O/Al2O3 and K2O/Na2O of the melt, but none with SiO2 content or Mg#. D-values for Cr, Mn and Co overlap with those of basalts, whereas those for Sc (0.011–0.018), Zn (0.44–0.49) and Ga (0.006–0.007) are lower. D V of various potassic rocks (0.015 in the Ugandan rocks) confirms the dependence on fO2 calibrated by the Fe3+/(Fe3++Fe2+) of spinels; the Ugandan potassic rocks crystallized at fO2 = FMQ to FMQ + 1. The ugandite olivines have some trace element characteristics reminiscent of those in metasomatized Kaapvaal peridotites, but not ocean islands. Line scan analyses are contaminated in Al, Ca, Cu, Ga, Sr, Zr, Nb, La and Ce, elements that are also concentrated in microcracks between subgrains, indicating smearing out during polishing, and demonstrating that large spot analyses produce the best results.  相似文献   

9.
Diogenites are orthopyroxenites and harzburgites that are petrogenetically associated with basaltic magmatism linked to the earliest stages of asteroidal melting on the parent body for the howardite-eucrite-diogenite (HED) meteorites. There are several models proposed for their origin: (1) accumulation of orthopyroxene (OPX) + chromite (CHR) ± olivine (OL) during the crystallization of a magma ocean during the initial stages of asteroidal differentiation, (2) accumulation of OPX + CHR ± OL during the crystallization of compositionally distinct basaltic magmas emplaced into the crust of the HED parent body, and (3) the orthopyroxenites formed by the crystallization of basaltic magmas within the HED parent body crust, whereas the harzburgites represent the mantle of the HED parent body. Although OL and OPX experienced varying degrees of subsolidus reequilibration (1100-700 °C), their minor and trace element characteristics appear to partially preserve magmatic signatures that provide insights into distinguishing among different models for the origin of diogenites. The OPX exhibits a continuous and very systematic variation in incompatible elements such as Al, Ti, Zr, Y, and Yb. Polymict diogenites (i.e. Roda, EET 79002) can contain distinct lithologies with both different incompatible element characteristics and different model abundances of OL. There appears to be no relationship between the appearance and abundance of OL and the incompatible element characteristics of the OPX. The OL exhibits a range in Mg# and systematic variations Ni, Co, Ni/Co, and Mn. For examples, low Ni/Co appears to be closely associated with the harzburgites and Ni and Mn exhibit a negative correlation. Surprisingly, incompatible element concentrations in OPX are not negatively correlated to Ni concentrations in OL. The continuous nature of the minor and trace element characteristics of the OPX and OL is consistent with the all the diogenite lithologies forming through a single process such as crystallization within a magma ocean or a series of layered intrusions. Further, the range in incompatible element variability in the OPX, the Ni and Co systematics in the OL, and the association of distinctly different lithologies within polymict diogenites are most consistent with the diogenites representing lithologies from diverse layered intrusions. Alternatively, they may represent crystallization products of a magma ocean much more complex than has been thus far proposed (i.e. multiple MOs). There are some distinct differences between diogenites and the OL-rich achondrite QUE 93148 that was also analyzed during this study. These differences (such as Ni/Co in OL, estimated conditions of fO2) suggest that QUE 93148 is closely related to main-group pallasites rather than the parent bodies for the HED meteorites.  相似文献   

10.
In an effort to obtain information about mineral/melt trace element partitioning during the high pressure petrogenesis of basic rocks, we determined rare earth and other trace element abundances in megacrysts of clinopyroxene, orthopyroxene, amphibole, mica, anorthoclase, apatite and zircon, and in their host basalts. In general, the ranges of mineral/melt partition coefficients established from experimental partitioning studies and phenocryst/matrix measurements overlap with the ranges of megacryst/host abundance ratios. Our data for Hf, Sc, Ta and Th partitioning represent some of the only estimates available. Consideration of phase equilibria, major element partitioning and isotopic ratios indicate that most of the pyroxene and amphibole megacrysts may have been in equilibrium with their host magmas at high pressures (mostly 10–25 kb). In contrast, it is unlikely that mica, anorthoclase, apatite and zircon megacrysts formed in equilibrium with their host basalts; instead, we conclude that they were precipitated from more evolved magmas and have been mixed into their present host magmas. Consequently, the trace element abundance ratios for megacryst/host should not be interpreted as partition coefficients, but only as guides for understanding trace element partitioning during high pressure petrogenesis. With this caveat, we conclude that the megacryst/ host trace element abundance data indicate that mineral/melt partition coefficients in basaltic systems during high pressure fractionation are not drastically different from partition coefficients valid for low pressure fractionation.  相似文献   

11.
A few eucrites have anomalous oxygen isotopic compositions. To help understand their origin and identify additional samples, we have analyzed the oxygen isotopic compositions of 18 eucrites and four diogenites. Except for five eucrites, these meteorites have Δ17O values that lie within 2σ of their mean value viz., −0.242 ± 0.016‰, consistent with igneous isotopic homogenization of Vesta. The five exceptional eucrites—NWA 1240, Pasamonte (both clast and matrix samples), PCA 91007, A-881394, and Ibitira—have Δ17O values that lie, respectively, 4σ, 5σ, 5σ, 15σ, and 21σ away from this mean value. NWA 1240 has a δ18O value that is 5σ below the mean eucrite value. Four of the five outliers are unbrecciated and unshocked basaltic eucrites, like NWA 011, the first eucrite found to have an anomalous oxygen isotopic composition. The fifth outlier, Pasamonte, is composed almost entirely of unequilibrated basaltic clasts. Published chemical data for the six eucrites with anomalous oxygen isotopic compositions (including NWA 011) exclude contamination by chondritic projectiles as a source of the oxygen anomalies. Only NWA 011 has an anomalous Fe/Mn ratio, but several anomalous eucrites have exceptional Na, Ti, or Cr concentrations. We infer that the six anomalous eucrites are probably derived from five distinct Vesta-like parent bodies (Pasamonte and PCA 91007 could come from one body). These anomalous eucrites, like the isotopically normal, unbrecciated eucrites with 4.48 Gyr Ar-Ar ages, are probably deficient in brecciation and shock effects because they were sequestered in small asteroids (10 km diameter) during the Late Heavy Bombardment following ejection from Vesta-like bodies. The preservation of Vesta’s crust and the lack of deeply buried samples from the hypothesized Vesta-like bodies are consistent with the removal of these bodies from the asteroid belt by gravitational perturbations from planets and protoplanets, rather than by collisional grinding.  相似文献   

12.
In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trachyte series and adjacent mafic-ultramafic layered intrusions, as well as on the avail-able data for basalt, andesite, dacite and rhyolite series in southern Andes,Chile ,which have been well documented.It is demonstrated that the abundance constant (R) for a given trace element at dif-ferent stages of fractional crystallization of a parental magma is highly variable,which can be used as a criterion to divide fractional crystallization stages.  相似文献   

13.
Concentrations of the REE, Sc, Co, Fe, Zn, Ir, Na and Cr were determined by instrumental neutron activation and mass spectrometric isotope dilution analysis for mineral separates of the coarseand fine-grained types (group I and II of Martin and Mason's classification) of the Allende inclusions.These data, combined with data on mineral/liquid partition coefficients, oxygen isotope distributions and diffusion calculations, suggest the following: (1) Minerals in the coarse-grained inclusions (group I) crystallized in a closed system with respect to refractory elements. On the other hand, differences in oxygen isotope distributions among minerals preclude a totally molten stage in the history of the inclusion. Group I inclusions were formed by rapid condensation (either to liquid or solid) in a supercooled solar nebula; extrasolar pyroxene and spinel dust were included but not melted in the condensing inclusions, thus preserving their extrasolar oxygen isotope composition. REE were distributed by diffusion during the subsequent heating at subsolidus temperatures; because oxygen diffuses much more slowly at these temperatures, the oxygen isotope anomalies were preserved. (2) The fine-grained (group II) inclusions were also formed by condensation from a super-cooled nebular gas; however, REE-rich clinopyroxene and spinel were formed early and REE-poor sodalite and nepheline were formed later and mechanically mixed with clinopyroxene and spinel to form the inclusions. The REE patterns of the bulk inclusions and the mineral separates are fractionated, indicating that REE abundances in the gaseous phase were already fractionated at the time of condensation of the minerals. (3) Pre-existing Mg isotope anomalies in the coarse-grained inclusions must have been erased during the heating stage thus resetting the 26Al-26Mg chronometer.  相似文献   

14.
在对Sc、Co、Ni、Ga、Rb、Sr、Mo、Ba等微量元素进行电感耦合等离子体质谱(ICP-MS)测试和对泥岩粘土矿物进行x射线衍射相对定量分析的基础上,结合骨架砂岩岩石薄片镜下观察结果,采用Sr-Rb—Ba-Sc多元素标准化图解,分析了济阳坳陷石炭二叠系暗色泥岩微量元素赋存特征及其所指示的海陆沉积相变化、火山事件、物源等方面的地质意义。研究结果表明:(1)济阳坳陷暗色泥岩微量元素含量普遍比华北地台同时期沉积物高(Ba除外)。(2)济阳坳陷本溪组和太原组下部发育海相沉积以及上石盒子组曾发生数次规模较大的海侵,表现为在Sr-Rb-Ba-Sc标准化图解中sr上扬,或Rb-Ba—Sc近似呈直线;局限台地相沉积可能造成其上部相邻地层泥岩中Rb、Sr发生异常。(3)在济阳坳陷石炭二叠系骨架砂岩岩石薄片中观察到自形石英、港湾状石英、聚片双晶长石、保存较好的挠曲状云母,推测石炭二叠系受到多次火山作用影响;Sr-Rb—Ba-Sc标准化图解中Rb异常可能揭示火山作用的影响,而Rb异常的泥岩样品通常高岭石含量非常高(〉70%),且伊利石含量非常低(〈5%)。(4)Rb-Ba-Sc标准化图解显示济阳坳陷石炭二叠系物源区可能是华北地台北部的古老岩体,母岩岩浆来自上地壳。  相似文献   

15.
Diogenites contain equilibrated orthopyroxene-olivine assemblages. Mn is very regularly partitioned between olivine and orthopyroxene in pallasites, diogenites and synthetic eucrite melts, with an FeOMnO partition ratio for olivine versus orthopyroxene of 1.6 by weight over a very wide range of FeO contents. In contrast to diogenites, Fe and Mn are not regularly partitioned between the olivine and orthopyroxene of mesosiderites and these minerals were not in equilibrium. Mesosiderite olivine differs from diogenite olivine in FeMn and CaMn ratios. Lack of olivine-orthopyroxene equilibrium suggests that olivine in mesosiderites was derived not from a pyroxenite component analogous to diogenites but from dunites.  相似文献   

16.
Sixteen new major and trace element analyses of granitic and acid volcanic rocks from the Barberton Mountain Land, eastern Transvaal, are reported. The data indicate very low abundances of LIL elements in albite porphyries incorporated in the lower ultramafic to mafic succession of the volcanic Onverwacht Group, and in the ‘ancient tonalites’ plutonic suite which intruded the volcanics at about 3.2–3.4 aeons. Some of the albite porphyries display highly fractionated REE patterns, which indicate equilibration with garnet and therefore high-pressure origin. The REE patterns of the ‘ancient tonalites’ are characterized by pronounced positive Eu anomalies, and their derivation by partial melting of eclogite within the depth range of 30–50 km is suggested. Some of the albite porphyries may represent shallow-level hypabyssal equivalents of the ‘ancient tonalites’. The Dalmein and Bosmanskop plutons are regarded as late members of the ‘ancient tonalites’ suite, derived by decreasing partial melting of basic source rocks. A contrasting model of origin is suggested for the ca. 3.0 aeons old Nelspruit migmatite and Hood granite, which are thought to have been derived by anatexis of the ‘ancient tonalites’ and incorporated ultramafic to mafic xenoliths of the Onverwacht Group. The chemistry of greywackes of the Fig Tree Group, which overlie the Onverwacht Group, is consistent with the erosion of a terrain consisting of Onverwacht Group and ‘ancient tonalites’—including late K-rich members of the latter suite. The data lend support to models involving a secular transformation from an ensimatic to an ensialic tectonic environment, but important geochemical differences are indicated between the Archaean rocks and acid igneous suites of island arcs and oceanic domains.  相似文献   

17.
18.
Trace element and isotopic composition of baddeleyite   总被引:3,自引:0,他引:3  
Summary Baddeleyite from Palabora Igneous Complex, South Africa, is among the purest natural ZrO2 phases. This has been demonstrated by using various methods, i.e. microprobe, neutron activation, spark source and thermal ion mass spectrometry. HfO2 with 1.87% is the only other major component. The concentrations of other HFSE are also relatively high, compared to most other elements, that reach only a few ppm.The REE display a U-shaped pattern that is interpreted to be superimposed by a strongly LREE enriched source component. The high87Sr/86Sr initial of 0.713085 and the negative Ndt of –10.7 prove that this component was LILE enriched for a long time prior to the formation of the Palabora Igneous Complex. These data indicate that the baddeleyite crystallized from a magma which was derived from an enriched mantle reservoir, similar to that involved in the formation of group II kimberlites.
Spurenelemente und Isotopenzusammensetzung von Baddeleyit
Zusammenfassung Baddeleyit vom Palabora Igneous Complex, Südafrika, gehört zu den reinsten natürlichen Vorkommen von ZrO2. Dies wurde durch Analysen mit verschiedenen Methoden wie Mikrosonde, Neutronenaktivierung, Funken- und Thermionenmassenspektrometrie bestätigt. HfO2 ist mit 1.87 die einzige andere Hauptkomponente, auch die Konzentrationen der anderen HFSE sind relativ hoch im Vergleich zu den anderen Elementen, die nur wenige ppm erreichen.Die REE bilden ein U-förmiges Muster, das als Ausdruck einer stark LREE angereicherten Komponente im Ausgangsgestein gedeutet wird. Das hohe87Sr/86Sr-Initialverhältnis von 0.713085 und das negative Ndt von -10.7 belegen, daß diese Komponente über einen langen Zeitraum vor der Bildung des Palabora Igneous Complex angereichert gewesen war. Diese Daten deuten an, da der Baddeleyit aus einem Magma kristallisierte, das aus einem angereicherten Mantelreservoir stammte, ähnlich dem, das bei der Bildung der Gruppe 11 Kimberlite beteiligt war.
  相似文献   

19.
The Austral Islands, a volcanic chain in the South-Central Pacific Ocean (French Polynesia) are composed mainly of alkali basalts and basanites with subordinate amounts of olivine tholeiites and strongly undersaturated rocks (phonolite foidites and phonolite tephrites). The basaltic rocks have geochemical features typical of oceanic island suites. The distribution of incompatible trace elements indicate that the lavas were derived from a heterogeneous mantle source. The chondrite-normalized patterns of the incompatible elements in basaltic rocks of the Austral Islands are complementary to those of island arc tholeiites. As supported by isotope data, the observed trace element heterogeneities of the source are probably due to mixing of the upper mantle with subducted oceanic crust from which island arc tholeiitic magma was previously extracted.  相似文献   

20.
Trace element modelling of pelite-derived granites   总被引:25,自引:0,他引:25  
The presence or absence of a vapour phase during incongruent-melt reactions of muscovite and biotite together with the composition of the protolith determines the trace-element characteristics of the resulting melt, provided that equilibrium melting occurs for those phases that host the tracc elements of interest. For granitic melts, Rb, Sr and Ba provide critical constraints on the conditions that prevailed during melting, whereas REE are primarily controlled by accessory phase behaviour. Mass-balance constraints for eutectic granites that are formed by the incongruent melting of muscovite in pelites indicate that melting in the presence of a vapour phase will result in a large melt fraction, and deplete the restite in feldspar. Hence the melt will be characterized by low Rb/Sr and high Sr/Ba ratios. In contrast, vapour-absent melting will result in a smaller melt fraction, and an increase in the restitic feldspar. Consequently high Rb/Sr and low Sr/Ba ratios are predicted. Vapour-absent melting will also enhance the negative Eu anomaly in the melt. Granites that result from the incongruent melting of biotite in the source will be characterized by higher Rb concentrations than those that result from the incongruent melting of muscovite. The Himalayan leucogranites provide an example of unfractionated, crustally derived eutectic melts that are enriched in Rb but depleted in Sr and Ba relative to their metasedimentary protoliths. These compositions may be generated by the incongruent melting of muscovite as a low melt fraction (F0.1) from a pelitic source under vapour-absent conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号